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Abstract

Salmonella enterica serotype Typhimurium (S. Typhimurium) is a leading cause of gastro-

enteritis and bacteraemia worldwide, and a model organism for the study of host-pathogen

interactions. Two S. Typhimurium strains (SL1344 and ATCC14028) are widely used to

study host-pathogen interactions, yet genotypic variation results in strains with diverse host

range, pathogenicity and risk to food safety. The population structure of diverse strains of S.

Typhimurium revealed a major phylogroup of predominantly sequence type 19 (ST19) and a

minor phylogroup of ST36. The major phylogroup had a population structure with two high

order clades (α and β) and multiple subclades on extended internal branches, that exhibited

distinct signatures of host adaptation and anthropogenic selection. Clade α contained a

number of subclades composed of strains from well characterized epidemics in domesti-

cated animals, while clade β contained multiple subclades associated with wild avian spe-

cies. The contrasting epidemiology of strains in clade α and βwas reflected by the distinct

distribution of antimicrobial resistance (AMR) genes, accumulation of hypothetically dis-

rupted coding sequences (HDCS), and signatures of functional diversification. These obser-

vations were consistent with elevated anthropogenic selection of clade α lineages from

adaptation to circulation in populations of domesticated livestock, and the predisposition of

clade β lineages to undergo adaptation to an invasive lifestyle by a process of convergent

evolution with of host adapted Salmonella serotypes. Gene flux was predominantly driven

by acquisition and recombination of prophage and associated cargo genes, with only occa-

sional loss of these elements. The acquisition of large chromosomally-encoded genetic

islands was limited, but notably, a feature of two recent pandemic clones (DT104 and mono-

phasic S. Typhimurium ST34) of clade α (SGI-1 and SGI-4).
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Author summary

Salmonella Typhimurium is a leading cause of foodborne illness worldwide. Our current

understanding of the biology of Salmonella is largely based on studies using just two labo-

ratory strains of S. Typhimurium, with similar characteristics. Yet this pathogen exhibits a

remarkable diversity in host range, outcome of infection, and risk to human health. To

investigate the genetic basis of this diversity, we have explored the genetic relationship of a

collection of isolates that represent a substantial portion of the diversity of S. Typhimur-

ium, using whole genome sequencing. S. Typhimurium evolved forming two major

groups that differ in their distribution in livestock and wild avian species. The livestock-

associated group contained isolates commonly affecting human health and were often

drug resistant, while the wild avian-associated group was rarely associated with drug resis-

tance and less frequently associated with human infection. We report distinct evolution-

ary processes acting on subgroups of S. Typhimurium including loss of information

content of genomes, and gain or loss of genes predicted to affect functions such as antimi-

crobial resistance, disease potential, and environmental survival, and functional diversifi-

cation. This study provides a framework in which to understand the epidemiology of

Salmonella and improve assessment of its risk to animal and human health.

Introduction

Bacteria of the genus Salmonella are a common cause of foodborne disease. Most of the

approximately 2500 serovars cause gastroenteritis in humans and other animals, while some

have evolved host adaptation associated with extra intestinal disseminated infections in spe-

cific host species [1]. For example, Salmonella enterica serovar Typhimurium (S. Typhimur-

ium) and S. Enteritidis circulate in multiple vertebrate host species and cause food borne

infections in the human population. These and other non-typhoidal Salmonella serotypes

result in an estimated 75 million cases and 27 thousand deaths from gastroenteritis worldwide

[2]. S. Typhi and S. Paratyphi A circulate exclusively in the human population and cause an

estimated 2.5 million infections resulting in 65 thousand deaths each year as a result of the dis-

seminated disease typhoid and paratyphoid disease [2]. Similarly, other serotypes evolved host

adaptation to specific non-human host species, such as S. Gallinarum with poultry, S. Dublin

with cattle, and S. Choleraesuis with pigs, where they are associated with disseminated infec-

tions [1].

Although S. Typhimurium is considered to be a broad host range serotype, the epidemio-

logical record of S. Typhimurium phage types identified several S. Typhimurium pathovariants

with distinct host range, pathogenicity and risk to food safety [3, 4]. The pathovariant com-

monly associated with this serotype, has a broad host range and is associated with gastroenteri-

tis in the human population. Such broad host range strains of S. Typhimurium account for the

majority of those isolated by public health surveillance in England, presumably because they

are common in many species of livestock and poultry, the primary zoonotic reservoir for

human infections [5]. The epidemiological record of this pathovariant is characterised by suc-

cessive waves of dominant clones identified historically by their phage type, that account for

up to 60% of all human infections for several years, before being replaced by a subsequent

strains [6]. Dominant clonal groups have been characterized by strains of phage types DT9,

DT204/49 complex, DT104, and the current monophasic S. Typhimurium (S. 4,[5],12:i:-)

sequence type 34 (ST34), since around the middle of the last century [7–10]. In contrast, some

phage types are common in clonal groups typically associated with a restricted host range, and
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in some cases altered pathogenicity. For example, clonal groups of S. Typhimurium DT8, DT2

and DT56 circulate in populations of ducks, pigeon, and passerine birds, respectively, and only

rarely cause gastroenteritis in the human population [11–13]. Also, specific clonal groups of S.

Typhimurium ST313 are associated with disseminated disease (invasive non-typhoidal Salmo-
nella, iNTS) in sub-Saharan Africa [14, 15].

In this study we report the population structure, gene flux, recombination and signatures of

functional diversification in the whole genome sequence of 131 strains of S. Typhimurium

with well characterised epidemiology. To assist in our analysis, we also report high quality

complete and closed whole genome sequence of six additional reference genomes, represent-

ing diversity within the population structure not represented by previously reported sequence

data.

Results

Population structure of S. Typhimurium consists of two high-order clades

containing strains with distinct epidemiology

Variant sites (38739 SNPs) in the core genome sequence of 134 S. Typhimurium strains repre-

senting commonly isolated phage types revealed two diverse phylogroups composed of three

strains of ST36 that clustered separately from the remaining 131 Typhimurium isolates (S1

Fig). The two phylogroups were more similar to one another than any other serotype, includ-

ing a closely related isolate of serotype S. Heidelberg. Since the majority of S. Typhimurium

formed a large number of relatively tightly clustered isolates, predominantly of ST19, we

focussed on the analysis of the population structure and evolution of this phylogroup. A phylo-

genetic tree constructed using variant sites (8382 SNPs) in the core genome sequence of the

131 S. Typhimurium strains and rooted with S. Heidelberg, revealed a ‘star’ topology with rela-

tively long internal branches extending from a hypothetical common ancestor, and diversifica-

tion at the terminal branches (Fig 1).

The population structure determined using a three-level hierarchical Bayesian approach

[16] resolved S. Typhimurium into two major clades, designated α and β, seven second level

clades and 18 third-level clades (α 8–18 and β 1–7) (S1 Table). In many cases, third level clades

corresponded to known epidemic clades, with the exception of β1 that was a poorly defined

basal clade, and we therefore focused on 1st and 3rd level clades. Clade β was defined by an

internal branch that originated from a common ancestor of the basal clade α, defined by

approximately 100 core genome SNPs.

Despite relatively few SNPs distinguishing clade α and β, these clades exhibited distinct epi-

demiology characterised by association predominantly with livestock, including cattle, pigs

and poultry (clade α) or avian species, including wild species (clade β). Strikingly all pig iso-

lates from our sampling were located in clade α. Cattle isolates were in both first order clades

(11 in clade α 7 in clade β), but in clade β they had a relatively limited distribution with five of

the isolates from a subclade containing the DT204/49 complex of strains associated with a cat-

tle associated epidemic in the 1970’s [8]. Clade α contained strains from several previously

described epidemics in livestock animal species, including in pigs (α12, U288)[17], two clades

associated with recent pandemic clonal groups associated with pigs, cattle and poultry (α17,

monophasic Typhimurium ST34 and α15, DT104) [18–20], and potentially epidemic clades

not previously described in the literature, consisting of isolates from pigs, cattle and poultry

(α8 and α11). Clade-β was characterised by many long internal branches, indicative of a rela-

tively high level of root to tip sequence divergence, relative to those in Clade-α. In contrast,

clade-β contained several third-level clades previously described as host-adapted, particularly

for avian species such as passerine birds (β5, DT56), duck (β2, DT8) and pigeon (β3 DT2)
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Fig 1. Phylogenetic relationship of the ST19 Salmonella Typhimurium phylogroup. (A) Maximum likelihood phylogenetic tree and based on sequence variation

(SNPs) in the core genome with reference to S. Typhimurium strain SL1344. The root was identified using S. Heidelberg (accession number NC_011083.1) as the

outgroup. 1st (α and β) and 3rd (α11–19 and β1–7) are indicated (vertical bars). Phage type complexes associated with the third-level clusters are indicated (bold type)

colour coded with the lineages and representative strains from third level clusters (italicized type). The source of each isolate in the tree is indicated by filled boxes colour

coded as indicated in the inset key (arrow). The presence of replicon sequence (grey box), antimicrobial resistance genes (blue box) and hypothetically disrupted coding

sequence (HDCS) of virulence related genes (red box) in short read sequence data are indicated. HDCS in nfsA and nfsB resulting in resistance to nitrofuran antibiotics

and ns SNPs resulting in substitutions in the QRDR of GyrA are indicated (light blue boxes). (B) Bars indicate the number of ancestral (black), phage or insertion

sequence elements (grey), chromosomal gene (colour coded with lineages in Fig 1A) HDCS in the genome of representative strains from each third level clade. (C)

Box plots indicate the mean Δbitscore (DBS: bitscore SL1344 –test strain bitscore) of proteomes in third level clades. (D) Box plot indicates the percentage of the

proteome of the proteome of isolates from each third level clade with a non-zero bitscore (bitscore SL1344 –test strain bitscore>0 or<0) as an estimate of function

divergence. (E) Box plots indicate the mean invasiveness index per genome, the fraction of random forest decision trees voting for an invasiveness phenotype based on

training on the DBS of a subset of the proteome of ten gastrointestinal and extraintestinal pathovar serotypes.

https://doi.org/10.1371/journal.pgen.1008850.g001

PLOS GENETICS Evolution of Salmonella Typhimurium

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008850 June 8, 2020 4 / 29

https://doi.org/10.1371/journal.pgen.1008850.g001
https://doi.org/10.1371/journal.pgen.1008850


[21], and ST313 that includes two sub-clades specifically associated with disseminated disease

in sub-Saharan Africa [22].

To estimate the coverage of clinical isolates from the UK and global S. Typhimurium by our

dataset, we compared the 131 S. Typhimurium genomes with 1697 S. Typhimurium genomes

isolated from human clinical infection in the UK in 2014 and 2015 described previously [23],

and 14,478 genomes from non-UK isolates, excluding ST36, in the EnteroBase database [24]

(S2 Fig). With both datasets, we grouped these genomes according to their cgMLST Hierarchi-

cal Clusters at the level of 100 alleles difference (HierCC HC100) as defined in EnteroBase

[24]. This provided an estimation of the genomic diversity within S. Typhimurium. We then

determined the proportion of HierCC groups that contained a genome from our dataset, and

the number of genomes in shared clusters. In the first comparison, 38.5% of hierarchical clus-

ters were represented in our dataset and UK clinical isolates. Shared HC’s contained 95.1% of

genomes from clinical infections because most of the unrepresented HC’s contained few

genomes. In regard to the rest of the world, 17% of HC’s were represented in our dataset, but

shared HierCCs accounted for 71.5% of the EnteroBase genomes. Therefore, although our

dataset represents less than half of the known hierarchical clusters, it does cover the majority

of genomes in available databases.

Antimicrobial resistance genes and plasmid replicons are common in

isolates associated with livestock

The presence of multiple third-level clades associated with recent livestock associated epidemic

strains in the first level clade α and the relative paucity in clade β suggested that they may be

under differential anthropogenic selection pressure. A key anthropogenic selection pressure

on microbial populations circulating in livestock is the widespread use of antimicrobial drugs

in animal husbandry. Consistent with their distinct epidemiology, antimicrobial resistance

(AMR) genes were common in clades α (mean of 2.7 per strain) and relatively rare in β (mean

0.38 per strain) (Fig 1A and S2 Table). Indeed, AMR genes in clade-β were restricted to strains

from DT204/49 complex known to be associated with cattle [8] and the ST313 associated with

disseminated disease in sub-Saharan Africa commonly treated with antibiotics [22].

Resistance to fluoroquinolone and nitrofuran antimicrobials is associated with sequence

polymorphisms in the gyrA and parC, and nsfA and nsfB, respectively [25, 26]. Of four substi-

tutions in the quinolone resistance determining region (QRDR) of GyrA and ParC, just GyrA

S83F was present in six isolates, four from α12 (pig-associated U288) and two from α8 (DT104

complex), had a sequence polymorphism resulting in GyrA S83F. No other mutations affecting

the QRDR were detected. Nitrofuran resistance has been linked to HDCS due to insertion

sequence (IS) elements or sequence polymorphisms, primarily of the nsfA gene, but occasional

secondary mutations in nsfB [26]. The nsfA gene was present as an HDCS in just two isolates

from subclade β1 and nsfB in 22 isolates from subclade β5 (DT56 complex).

AMR genes are commonly present on plasmids and we therefore determined the presence

of plasmid replicon sequence in short read sequence data from the 131 strains in clades α and

β. The IncQ1 plasmid replicon, previously associated with antibiotic resistance [27] was wide-

spread, particularly in clade α. The IncF replicon corresponding to the presence of the viru-

lence plasmid pSLT [28] was also widespread in S. Typhimurium as expected, and associated

with antibiotic resistance in a number of subclades including ST313 and U288 complex [14,

29]. The pSLT plasmid varied in size ranging from 96 to 167kb (Table 1), and assembly of

pSLT from short read sequence from all 131 isolates indicated no significant difference in the

mean size between clades α and β. The pSLT plasmid was notably absent from a number of

third-level clades including β5 (DT56), α11 and α17 (monophasic S. Typhimurium ST34).
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Many key virulence genes of Salmonella enterica are present on Salmonella pathogenicity

islands (SPIs) [30]. In general, SPI-1 to 6 were highly conserved, consistent with their key role

in pathogenesis. However, SPI-4 containing the sii locus that encodes a giant adhesin secreted

by a type I secretions system [31], exhibited elevated sequence divergence in several β sub-

clades (S3 Fig). SPI-6 that encodes a type VI secretion system that mediates a cell contact

dependent mechanisms of interbacterial antagonism involved in colonisation of the intestine

[32], exhibited moderate sequence variation in isolates in subclade β7.

Distinct patterns of genome degradation and signatures of functional

divergence and invasiveness in clades α and β
Hypothetically disrupted coding sequences (HDCS) due to frameshift mutations or premature

stop codons were determined in high quality finished and closed genome sequence of 11 rep-

resentative strains from major subclades (Fig 1B and S3 Table). Representative strains of clade

α generally contained fewer HDCS than those from clade β, with the exception of NCTC13348

(DT104) and SL1344 (DT204/49) that had atypically high and low numbers of HDCS, respec-

tively (Fig 1B). However, none of the HDCS in NCTC13348 were in genes previously been

implicated in pathogenesis, while SL1344 contained two virulence gene HDCS (lpfD and ratB)

(Fig 1A). In general, clade α strains had 0–3 HDCS in virulence genes (mean 0.8 SD 0.9), while

Table 1. Characteristics of complete and closed whole genome sequence of S. Typhimurium reference strains.

strain ST PTa accession

no.

clade chrom

sizeb
pSLTc P1c P2c ECC d CDSe SNPsf Prophageg total

HACh
spec.

HAC

year isolation source

SO9207-07 19 DT170B PRJEB34598 α11 4.92 - - - 0 4592 973 7 (5:1:1) 48 7 2007 Pig

SO1960-05 19 U288 PRJEB34597 α12 4.90 154.4 19.4 18.2 3 4832 1272 8 (5:2:1) 57 16 2005 Pig

NCTC13348 19 DT104 HF937208.1 α15 4.93 94.0 - - 1 4751 1083 9 (5:3:1) 63 25 1988 Human

SO4698-09 34 DT193 LN999997.1 α17 5.04 - - - 0 4754 1010 9 (6:2:1) 43 7 2009 Cattle

SO7676-03 19 DT56 PRJEB34599 β5 4.88 - - - 0 4570 797 6 (4:1:1) 75 26 2003 Bird

SO9304-02 19 DT41 PRJEB34596 β4 5.05 117.4 32.2 3 4685 943 8 (5:2:1) 78 15 2002 Cattle

SL1344 19 DT44 FQ312003.1 β1 4.88 93.8 86.9 8.7 3 4771 0 9 (4:3:2) 42 2 ~1966 Cattle

LO1157-10 19 DT8 PRJEB34595 β2 4.86 93.8 23.9 22.2 3 4706 1101 7 (4:2:1) 62 19 2010 Duck

D23580 313 - FN424405.1 β1 4.88 117.0 84.6 - 2 4790 901 7 (5:2:0) 57 9 2004 Human

A130 313 DT56v PRJEB34594 β1 4.93 166.9 - - 1 4812 901 8 (5:2:1) 62 13 2001 Human

94–213 98 DT2 HG326213.1 β3 4.82 93.8 - - 1 4598 903 5 (3:1:1) 66 20 1994 Pigeon

a Phage type / Sequence type
b Chromosome size (Mbp)
c contig size (Kbp)
d extra chromosomal contigs (ECC), putative plasmid sequences
e Number of predicted coding sequences
f number of SNPs with reference to SL1344
g Number of prophage (intact, incomplete, candidate)
h total number of pseudogenes with reference to SL1344 allele, i number of clade-specific pseudogenes (S1 Table), i mean delta bitscore (DBS) with reference to SL1344

protein orthologue.

https://doi.org/10.1371/journal.pgen.1008850.t001
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clade β was characterised by multiple lineage containing three or more virulence gene HDCS

(mean 5.0 SD 3.2) (Fig 1A and S4 Table). Isolates in clade β5 (DT56, passerine bird associated

[13]) contained up to eleven virulence gene HDCS (lpfD, ratB, sseK3, siiE, siiC, ttrB, sseJ, gogB,

sseK2, fimH and katE). The greatest number of HDCS in clade α were observed in α12 (U288,

possibly pig adapted), in which three virulence genes were affected (avrA, sadA and tsr). LpfD
was found to be the only HDCS (S3 Table) that segregated between clade-α and clade-β. A

10-nucleotide deletion causing a frameshift mutation in lpfD resulting in a truncation approxi-

mately half way into the protein in all isolates of clade-β.

To quantify the relative level of functional divergence in the proteome of isolates in each

clade we used a profile hidden Markov Model approach, delta-bitscore (DBS profiling) [33]

(Fig 1C and S5 Table). The method assigned a value (bitscore) to peptides of the proteome that

indicated how well each sequence fitted the HMM. We determined the difference in bitscore

of the proteome of each isolate relative to that of S. Typhimurium strain SL1344

(DBS = bitscore SL1344 proteome—bitscore test proteome). A greater DBS is therefore indica-

tives of excess of polymorphisms that potentially alter protein function, and most likely a loss

of function as it indicates divergence from the profile HMM. Mean DBS was significantly

greater (p<0.05, Wilcoxon test) for proteomes of strains in clade-β compared with clade-α
(Fig 1C). In general, third-level clades in clade-α exhibited DBS of approximately zero, consis-

tent with limited functional divergence. Notably, despite considerable numbers of HDCS in

strain NCTC13348 (α15, DT104), DBS was only moderately elevated in this clade. Proteomes

of strains in clade β exhibited mean DBS of 0.03 and above with the exception of clades β1 and

β2. The proportion of the proteome with any deviation in DBS was also greater in clade-β than

clade-α (Fig 1D).

We also used a machine learning approach to predict the ability of strains to cause extrain-

testinal disease based on convergent patterns of mutation accumulation detected by delta bit-

score (DBS), in 196 proteins that were recently determined and reported as the most

predictive of the invasiveness phenotype in 13 serotypes (six extra-intestinal pathovars and

seven gastrointestinal pathovars) of S. enterica subspecies I [34, 35] (Fig 1E). Protein sequences

for the 196 genes were retrieved for each isolate in the study, scored by DBS, and run through

the model. The invasiveness index metric is the fraction of decision trees in a random forest

algorithm that vote for an invasive phenotype based on DBS values. The invasiveness index

was significantly greater (p<0.05, Wilcoxon test) in clade-β than clade-α, consistent with the

epidemiology and pathogenicity of the isolates located in these clades [3, 4].

The clade-specific accessory genome is largely driven by acquisition of

prophage genes and integrative elements

A pangenome analysis of S. Typhimurium (excluding the ST36 phylogroup) identified 9167

total gene families. The core genome (present in 99–100% of strains) was 3672 genes, soft core

genome (95–99%) 388 genes. Shell genome (15–95%) 792 genes, and cloud genes (0–15%)

4315 genes (Fig 2A and 2B). We defined gene families of the accessory genome as non-pro-

phage chromosomal, prophage, plasmid and undefined, based on their location and annota-

tion in the complete and closed genomes of eleven reference strains phylogenetically

distributed across S. Typhimurium (Table 1). Gene families not present in reference genomes

were classified as ‘undefined’. The accessory genome was defined as genes present in 95% or

fewer of isolates and thus represents the major source of genetic variation between strains.

Some gene families exhibited a distinct distribution in clade α or β, or within individual

third-level clades of clade α or β (S4 Fig). Four non-phage chromosomal genes were specifi-

cally associated with clade-β strains, STM0038 a putative arylsulfatase, tdcE encoding a
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pyruvate formate lyase 4, aceF acetyltransferase and dinI a DNA damage inducible protein. A

series of plasmid genes in clade β2 corresponded to a region of p2 seen in LO1157-10. This

region is likely a transposon as it contains an IS200 transposase and an integrase. Also, a num-

ber of prophage-associated genes were present throughout clade-β due to apparent recombina-

tion in the ST64B prophage. The rate of gene flux in clade α and clade β was determined by

Fig 2. The pan genome of 131 S. Typhimurium isolates. Gene families were identified based on sequence alignment with a cut off of 90% sequence identity and

assigned to non-prophage chromosomal (red), prophage (green), plasmid (blue), or undefined (grey), based on their genome context in eleven annotated reference

genomes from each third level clade. (A) Number of genome families in the core, softcore, shell and cloud components of the pangenome. (B) Number of genome

families of each pan genome component in isolates from each S. Typhimurium third level clade. (C) Accessory genome (shell and cloud) in each isolate. Gene

families present in more than 130 or less than 5 strains were excluded. Maximum Likelihood tree based on variation (SNPs) in the core genome with reference to S.

Typhimurium SL1344. Third-level clades are indicated in colour coded in common with the phylogeny vertical bars.

https://doi.org/10.1371/journal.pgen.1008850.g002
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computing the number of accessory genes as a function of SNPs in each clade. By this measure,

the rate of gene flux was nearly twice as high in clade α compared to clade β (S5 Fig).

Generally, gene flux in the non-prophage and non-plasmid gene families that were specific

to individual third level clades was limited to individual genes or small blocks of genes (S4

Fig). The exception was two large genetic islands in clades α15 (DT104 complex) and α17

(monophasic S. Typhimurium ST34) corresponding to the presence of SGI1 [36] and SGI4

[37]. In addition, a chromosomal block of genes in clade β2 corresponding to an insertion at

the Thr-tRNA at 368274 containing a series of hypothetical proteins and a gene with similarity

to the trbL gene involved in conjugal transfer (A0A3R0DZN6) and a site-specific integrase.

Some of these genes were also present in isolates in clades β1 and β3. The greatest contribution

to third level clade specific gene families was in the those with predicted functions in prophage

(Fig 2C and S4 Fig).

Extant prophage repertoire is the result of recombination and infrequent

loss of ancestral elements and acquisition of new phage

In order to investigate the flux of prophage genes resulting in clade-specific repertoires, we

identified prophage in eleven complete and closed reference genomes of S. Typhimurium

sequences. A total of 83 complete or partial prophage elements were identified in the eleven

reference genomes (Fig 3). Prophage were present at twelve variably occupied chromosomal

loci and the number per strain ranged from five in DT2 (strain 94–213) to nine in monophasic

S. Typhimurium ST34 (strain SO4698-09) (Table 1). Clustering of gene families in the pro-

phage pangenome identified 23 prophage, although in some cases blocks of genes were

replaced resulted in mosaic prophage for example “Salmonella virus ST64BX” and “Salmonella
virus Gifsy1X” (S6 Table), and the definition of families of prophage with a high confidence

was consequently problematic (Fig 4). Thirteen prophage elements encoded at least one identi-

fiable cargo gene, capable of modifying the characteristics of the host bacterial strain, including

eleven genes previously implicated in virulence (S3 Table). Ten prophage families contained

no recognisable cargo genes. The evolutionary history of prophage acquisition and loss was

reconstructed based on principles of maximum parsimony. Six prophage (Salmonella viruses

“BcepMuX”, “Gifsy1X”, “Gifsy2X”, “Fels1X”, “ST64BX” and “sal3X”, hereafter referred to as

BcepMu, Gifsy1, Gifsy2, Fels1, ST64B and sal3) (S6 Table), that together accounted for 61 of

the prophage in these genomes, were most likely present in the common ancestor of S. Typhi-

murium. Loss of two of these ancestral prophage by three isolates (NCTC13348, L01157-10

and D23580) represented the only evidence for decrease in prophage repertoire in the dataset.

A total of 22 additional prophage had a limited distribution within S. Typhimurium strains,

present in three or fewer genomes Salmonella viruses (“TmEGF”, “TmSEN34”, “mTmII”,

“mTmV”, BTP1, “TmST104”, “SPN9CC”, Fels2, “TmHP1/mTmHP1”, BTP5, “TmC3PO”,

“RE2010”, “TmR2D2” and “TmSEN1”) (S6 Table) and are therefore likely to have been

acquired during the evolution of S. Typhimurium (Fig 4). Salmonella virus BTP1 that was

reported to be specific to the ST313 strains associated with epidemics of invasive NTS disease

in sub-Saharan Africa [38], was also present in strain SO7676-03, a strain in clade β5 (DT56

complex) adapted to circulation in wild bird (Passerine) species [12]. “Salmonella virus

mTmV” of strain SO4698-09, that carries the sopE virulence gene in some monophasic S.

Typhimurium ST34 isolates [18], was absent from all other S. Typhimurium reference strains.

However, a second prophage “Salmonella virus mTmII” with similarity to SJ46 was also in

strain SO4698-09, and shared several clusters of gene families in common with mTmV.

With the notable exception of BcepMu the prophage predicted to be present in the com-

mon ancestor of S. Typhimurium exhibited considerable variation, potentially due to
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recombination [39] (Fig 4). Recombination is a major source of genetic variation in bacteria,

although the level of recombination seen in other bacteria and indeed other Salmonella sero-

vars vary greatly. We identified potential recombination in the genome sequence of the 131 S.

Typhimurium of the main phylogroup by the identification of atypical SNP density. Recombi-

nation was almost exclusively present in prophage regions resulting in clade specific sequence

variation (Fig 5). Recombination resulted in replacement of large blocks of gene families in

ancestral prophage elements. Fels1, sal3 and Gifsy2 were conserved in the most reference

strains, with the exception of Fels1 in DT104 and Gifsy2 in monophasic S. Typhimurium ST34

that had large alternative blocks of gene families. Gifsy1 was highly variable in all strains, but

retained a core set of genes suggesting common ancestry and frequent recombination. Varia-

tion in ST64B was also present in most strains, and variable blocks of genes distinguished

strains in first order clades α from β, and resulted in the acquisition of sseK3 virulence gene by

the common ancestor of the latter.

Fig 3. Clustering of prophage genes based on sequence identity indicates related families and potential recombination. Genes from all prophage identified in

complete and closed whole genome sequence of eleven reference strains of S. Typhimurium were assigned to families based on sequence identity (>90% identity).

Prophage genes (columns) were clustered to identify related prophage. The presence of a gene is indicated with a box predicted function based on in silico annotation are

colour coded based on annotation, terminase (black), capsid (green), recombinase/integrase (purple), tail fibre (blue), other phage associated (red), and hypothetical

protein (grey). A cladogram showing the relationship of prophage is based on the pattern of gene presence or absence is indicated (top).

https://doi.org/10.1371/journal.pgen.1008850.g003
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Discussion

The population structure of S. Typhimurium consisted of two relatively distantly related clus-

ters comprising strains of ST36 and a second (main) phylogroup predominantly ST19, con-

taining the remainder of S. Typhimurium, consistent with previous reports of two distinct S.

Typhimurium phylogroups [40, 41]. These two groups were more closely related to each other

than to other serotypes of S. enterica subspecies I. The main Typhimurium phylogroup exhib-

ited a star shaped phylogeny with multiple deeply rooted branches emerging from a common

ancestor, with diversification at the terminal branches in some cases, associated with expan-

sion of epidemic clonal groups. The topology of this S. Typhimurium phylogroup was similar

to that of serotypes of S. enterica subspecies I [42, 43], with internal branches radiating from a

common ancestor, defined by the accumulation of hundreds of SNPs in S. Typhimurium com-

pared with tens of thousands of SNPs defining lineages of representative strains of distinct

serotypes of S. enterica subspecies I [4].

The nested phylogenetic structure, rooted with the S. Heidelberg outgroup, was character-

ised by two high order clades (α and β), in which clade α was basal to clade β. Several deeply

rooted lineages of clade α contained isolates almost entirely from livestock. A single lineage

originating from the common ancestor of the main S. Typhimurium phylogroup gave rise to

the common ancestor of clade β and diversification into multiple lineages was accompanied by

apparent host adaptation to diverse host species, but notably many more avian species, com-

pared with clade α. The β subclades included those associated with the DT56, DT2 and DT8

complexes that are well characterized host adapted clonal groups [11, 12, 21], contained exclu-

sively isolates from avian species, and were present on relatively extended internal branches.

This general phylogenetic topology is consistent with that described for distinct collections of

S. Typhimurium strains from North America and Asia [44, 45], and Enterobase [24]. The

EnteroBase database contained over 40,000 S. Typhimurium genome sequences at the time of

writing, with additional additional α and β subclades not present in our dataset, presumably

because they are not present in the UK. A lack of isolates from wild avian hosts and incomplete

metadata limited our ability to test many of our key findings with this larger dataset.

Fig 4. Genome alignment and phylogenetic relationship of complete and closed reference strains of S. Typhimurium or used in this study. Sequence with>90%

nucleotide sequence identity are indicated where this is direct alignment (green) or reverse and complement (red). The location of prophage sequence (red bars) or

integrative elements (blue bars) are indicated. A maximum likelihood tree based on sequence variation (SNPs) in the core genome with reference to S. Typhimurium

strain SL1344 (left) is annotated with the most likely order of acquisition (black arrow) or loss (red arrow) of prophage and integrative elements, based on the principle

of parsimony.

https://doi.org/10.1371/journal.pgen.1008850.g004
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Isolates in α subclades and some β subclades were under distinct anthropogenic selection

pressure for the acquisition and maintenance of AMR, that correlated with their distribution

in livestock or wild avian species [46]. Clade α isolates that were predominantly from livestock

contained several lineages with multiple AMR genes, while most clade β isolates contained few

or no AMR genes. Differential selection pressure for acquisition and maintenance of AMR

genes is consistent with the idea that some S. Typhimurium genotypic variants are adapted to

circulation in specific host populations that exert different selection pressure for the acquisi-

tion and maintenance of AMR genes. Antimicrobials have been used widely to control infec-

tion or as growth promoters in livestock, but wild animals are unlikely to encounter

therapeutic levels of these drugs [47]. However, S. Typhimurium strains of DT56 and DT40

present in clade β and known to be associated with passerine birds, lacked AMR genes, yet are

occasionally isolated from cattle and human clinical infections where they may be subject to

selection for antimicrobial resistance [48]. We might therefore also expect to find AMR genes

in DT56 and DT40 strains. One possibility is that DT56 and DT40 strains from clade β may

transiently colonise the cattle host but are unable to circulate in this population and do not

transmit back to the avian population with high frequency. Host adaptation to avian species

therefore appears to create an effective barrier to circulation in livestock. Two clade β lineages

did contain strains with multiple AMR genes, but in each case their epidemiology was atypical

Fig 5. Recombination inferred by high SNP density in 131 S. Typhimurium strains. Regions of high SNP density (red) are indicated for each of the 131 isolates in the

S. Typhimurium ST19 cluster with reference to the S. Typhimurium strain SL1344 genome. Recombination is shown with reference to the population structure and

phylogeny of Typhimurium shown in Fig 1. The position of predicted prophage (blue) in the S. Typhimurium strain SL1344 genome are indicated (top).

https://doi.org/10.1371/journal.pgen.1008850.g005
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for clade β in that they were associated with an epidemic in cattle (DT204/49 complex) or inva-

sive NTS in people in sub-Saharan Africa (ST313) [7, 22], and therefore were likely to be

under selection for AMR.

The molecular basis of the barrier to circulation of some clade β isolates in livestock is not

known, but likely the result of genotypic changes affecting functional diversification of the pro-

teome. The proteome delta bitscore (DBS) of clade β isolates exhibited elevated divergence

from profile HMMs of protein families in gamma proteobacteria, compared to clade α isolates,

potentially resulting in loss or altered protein function [21]. Similarly, divergence was reported

in the S. Gallinarum proteome, a serotype highly host adapted to poultry where it is associated

with fowl typhoid [33]. β subclades also exhibited an elevated invasiveness index, the fraction

of decision trees using random forests that vote for the invasive (extraintestinal) disease out-

come, a predictive score of host adaptation to an extraintestinal lifestyle. Consistent with this

finding, increased invasiveness of strains from clade-β lineages has been reported previously,

including S. Typhimurium DT2 isolates in day of hatch chicks [21] and ST313 isolates in day

of hatch chicks [49]. Signatures of invasiveness of ST313 strains was also consistent with

changes in interaction with mice and cattle in experimental models of infection [50, 51], and

multicellular behaviour in the environment [52].

We used a machine learning approach to determine an invasiveness index that was not

designed to identify mechanism of invasiveness, but instead discriminated genotypes associ-

ated with alternative pathotypes on the basis of shared proteomic signatures [34]. The relation-

ship of invasiveness index and site of isolation was reported previously [53]. In our analysis

DBS of 196 protein families most predictive of disseminated disease in S. Typhi, S. Patatyphi

A, S. Gallinarum, S. Dublin and S. Choleraesuis, also predicted an extraintestinal lifestyle in S.

Typhimurium β subclades, consistent with the epidemiological data [4]. The pattern of func-

tional divergence in some S. Typhimurium β subclades may therefore at least in part be by a

process of convergent evolution with that observed as a result of the evolution of several extra-

intestinal serotypes S. enterica, including S. Typhi, S. Patatyphi A, S. Gallinarum, S. Dublin and

S. Choleraesuis [34].

Host adaptation of bacteria is commonly associated with the accumulation of HDCS,

potential pseudogenes that contribute to genome degradation [54, 55]. A total of 24 genes pre-

viously implicated in virulence, adhesion or multicellular behaviour were HDCS in one or

more clade β isolates. Notably, 15 of these genes (63%) were also HDCS in highly host adapted

S. Typhi or S. Paratyphi A, serotypes that are restricted to humans and cause a disseminated

disease[56]. HDCS were especially common in strains of DT56/DT40 complex (clade β5), that

are reported to be highly host adapted to passerine birds, in which eleven HDCS were

observed. In S. Paratyphi A, many mutations and gene flux that occurred was reported to be

neutral, indicated by their sporadic distribution within clades, and frequent loss from the pop-

ulation by purifying selection [57]. In S. Typhimurium, we also observed some examples of

potential neutral mutations, but in many cases HDCS in virulence genes were present in multi-

ple related strains from the same subclade, indicating that they were likely under selection, and

stably maintained in the population (Fig 1). In contrast to clade β, genome degradation affect-

ing virulence-associated genes was less frequent in isolates clade α. Just three virulence gene

HDCS had a clade phylogenetic signature, avrA, tsr and sadA, in α10, α11 and α12. Subclade

α12 (U288 complex) was the only clade to contain all of these HDCS, consistent with the U288

complex exhibiting apparent host-adaption to pigs [17, 37]. Therefore, the presence of HDCS

in virulence associated genes was almost exclusively associated with subclades containing

strains with strong epidemiological evidence of host adaptation [4]. Despite the S. Typhimur-

ium DT104 complex strain NCTC13348 (clade α15) exhibiting a high level of genome degra-

dation that was uncharacteristic for α subclades and the broad host range epidemiology of the
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clonal group [58], no virulence or multicellular behaviour genes were HDCS [58]. Further-

more, the mean DBS for the proteome of strains from clade α15 was similar to that of other α
subclades, suggesting that functional divergence as a whole was not atypical from that of other

clade α isolates.

While genes encoding components of the type III secretion systems (T3SS) 1 and 2 appara-

tus were never HDCS, several genes encoding effector proteins secreted by them were (sseI,
sseK2, sseK3, avrA, sseL, sseJ and gtgE). The sseI gene is inactivated in ST313 due to insertion of

a transposable element, and results in hyper dissemination of these strains to systemic sites of

the host via CD11b+ migratory dendritic cells [51]. The sseK2, sseK3, avrA and sseL genes each

encode effectors that inhibit the NFκB signalling pathway thereby modulating the proinflam-

matory response during infection [59–61]. Furthermore, these effectors are commonly absent

or degraded in serotypes of Salmonella serotypes associated with disseminated disease [62, 63],

suggesting that altered interaction with the macrophage is essential for disseminated disease in

diverse Salmonella variants and hosts. In addition, several genes encoding components of fim-

brial or afimbrial adhesin systems (sadA, ratB, lpfD, stfD, stbD, safC, fimH, siiC and siiE), or

anaerobic respiration (ttrB), and chemotaxis (tsr) were HDCS in one or more isolates. Many

of these genes have been implicated in intestinal colonisation [31, 64–69], suggesting that their

inactivation in host adapted variants may be associated with a loss of selection for functions no

longer required in a reduced host range or where intestinal colonisation is no longer critical to

transmission. The sadA and katE, genes are involved in multicellular behaviour, biofilm for-

mation and catalase activity that protects against oxidative stress during high density growth

functions, respectively, and are commonly affected by genome degradation in host adapted

pathovars of Salmonella [52, 70].

The only virulence-related HDCS that segregated clades α and β resulted from a 10 bp

insertion in the lpfD gene of all clade β isolates. Within the host S. Typhimurium preferentially

colonises Peyer’s patches (PPs) [71], due to long-polar fimbriae Lpf binding to M-cells [72].

Similarly, lpf genes in E. coli pathotypes are required for interaction with Peyer’s patches and

intestinal colonisation [73]. Despite the disruption of lpfD in the clade β isolate SL1344, dele-

tion of lpf reduced colonisation on the surface of chicken intestinal tissue, [74], suggesting that

long polar fimbriae retain function. Differences in intestinal architecture of avian species that

have the lymphoid organ the bursa of Fabricius containing numerous M cells compared with

mammalian species that have Peyer’s patches with relatively scarce M cells [75, 76] may explain

the pattern of lpfD HDCS in S. Typhimurium. The function of long polar fimbriae expressing

full length LpfD in clade α isolates has not been investigated, but its distribution in isolates

from livestock and human infections mark it as of potential importance to human health.

Other virulence genes including gtgE, avrA and sseK3, exhibited sporadic distribution or

HDCS within third level clades, consistent with observations in models of infection suggesting

that they may play a role in adaptation to an invasive lifestyle [77–80].

Bacterial genome diversity is largely driven by the flux of genes resulting from acquisition

by horizontal gene transfer and deletion, rather than allelic variation [81]. The accessory

genome of S. Typhimurium revealed few genes that segregated clade α and β, but distinct

forms of ST64B prophage resulting from recombination that replaced a large block of genes

were present in clade α and β, and resulted in the presence of sseK3 specifically in clade β. The

accessory genome contributed significantly to genetic variation that distinguished third order

subclades in both clade α and β, especially phage and plasmid genes. Non-phage chromosomal

genes exhibited relatively little clade specific accessory genome suggesting that the majority

was the result of deletions or gene acquisition on small mobile genetic elements that were neu-

tral and subsequently lost, as observed previously in S. Paratyphi [57]. However, three large

genetic elements were acquired on the chromosome in α15 (DT104) or α17 (monophasic S.
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Typhimurium ST34), the two most recent dominant MDR pandemic clonal groups that

together account for over half of all S. Typhimurium infections in the human population

Europe in the past 30 years. The acquired genes corresponded to SGI1 [36] in the DT104 com-

plex, and SGI4 and a composite transposon in monophasic S. Typhimurium ST34 [18, 37],

highlighting the likely importance of horizontal gene transfer in the emergence of epidemic

clones.

Variable prophage repertoires are a major source of genetic diversity in Salmonella [82, 83],

and may contribute to the emergence and spread by impacting the fitness during intra-niche

competition due to lytic killing or lysogenic conversion of competing strains [84]. This view

was supported by the considerable phage-associated gene flux observed in S. Typhimurium.

Importantly, the phage component of the accessory genome in S. Typhimurium had a strong

correlation with the third level clade, suggesting that although transfer was frequent, the acqui-

sition or loss of prophage elements was not transient, consistent with selection within each

clonal group [57]. Reconstruction of the evolutionary history of prophage elements in the

main S. Typhimurium phylogroup indicated that the common ancestor likely contained six

prophage, Gifsy1, Gifsy2, Fels1, ST64B, sal3 and BcepMu, that were well conserved during sub-

sequent diversification. Just two of these ancestral prophage, Fels1 and Gifsy1, were lost from

the genome, on three occasions in different lineages. The majority of the prophage flux was

from the acquisition of between one to three prophage in each lineage, with the exception of a

lineage containing clade β3 (DT2), that only contained the ancestral prophage repertoire.

Together, our analyses are consistent with the view that the common ancestor of the main

S. Typhimurium phylogroup was a broad host range pathogen with little genome degradation

capable of circulating within multiple species of livestock. The age of the common ancestor of

S. Typhimurium is not known and previous attempts to calculate this using Bayesian

approaches have been frustrated by a weak molecular clock signal [85]. However, the common

ancestor of S. Paratyphi A was estimated to have existed approximately 500 years ago and pro-

vides a frame of reference [57]. The main S. Typhimurium phylogroup exhibited greater

genetic diversity than reported for S. Paratyphi A, with an estimated maximum root to tip SNP

accumulation of approximately 750 and 250, respectively. Therefore, the common ancestor of

the main S. Typhimurium phylogroup is likely to have existed earlier than that of S. Paratyphi

A. However, the S. Typhimurium most recent common ancestor (MRCA) is unlikely to have

predated the domestication of livestock, that began around ten thousand years ago [86], raising

the possibility that the emergence of this phylogroup was linked to the anthropogenic selection

provided by entry into a niche within the domesticated livestock. Subsequent to the emergence

of the common ancestor of this phylogroup, a single lineage appears to have spawned multiple

lineages, some of which have become highly host adapted to various wild avian species, by a

process of convergent evolution with that observed in host adapted serotypes of Salmonella
such as S. Typhi.

Materials and methods

Bacterial strains and culture

S. Typhimurium isolates and Illumina short read sequence used in this study have been

described previously [87], selected based on phage type determined during routine surveil-

lance by Public Health England (PHE) and the Animal and Plant Health Agency (APHA) in

order to represent the diversity S. Typhimurium phage types as a proxy for genetic diversity. A

strain collection of 134 S. Typhimurium or monophasic variant isolates was composed of 2 to

6 randomly selected strains from the top ten most frequent phage types from PHE and the top

20 most frequent phage types from APHA surveillance, from 1990–2010 (2–5 strains of each)
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were used in this analysis. In addition, commonly used lab strain SL1344 [88], two reference

strains of ST313 (D23580 and A130)[89] and three DT2 strains isolated from pigeon [90] were

included. For routine culture, bacteria were stored in 25% glycerol at -80oc and recovered by

culture on Luria Bertani agar plates, and single colonies were selected to inoculate LB broth

that was incubated at 37 oc for 18 hours with shaking.

Short-read de novo assembly

Illumina generated fastq files were assembled using an in-house pipeline adapted from that

previously described [91]. For each paired end reads, Velvet [92] (1.2.08) was used to generate

multiple assemblies varying the k-mer size between 31 and 61 using Velvet Optimiser [93] and

selecting the assembly with the longest N50. Assemblies were then improved using Impro-

ve_Assembly software [94] that uses SSPACE (version 3.0) [95] and GapFiller (version 1.0)

[96] to scaffold and gap-fill. Ragout was used to order contigs [97] based on comparison to the

long-read sequences. The finished genomes were then annotated using Prokka (version 1.11)

[98].

Long-Read sequencing using Pacbio and sequence assembly

DNA for long-read sequencing on the Pacbio platform was extracted from 10 ml of cultured

bacteria as previously described [87]. Data were assembled using version 2.3 of the Pacbio

SMRT analysis pipeline (https://smrt-analysis.readthedocs.io/en/latest/SMRT-Pipe-Reference-

Guide-v2.2.0/). The structure of the initial assembly was checked against a parallel assembly

using Miniasm [99] which showed general agreement. The Pacbio best practice for circulariz-

ing contigs was followed using Minimus [100] and the chromosomal contiguous sequence in

each assembly was re-orientated to begin at the thrA gene. Illumina short read sequence data

were used to correct for SNPs and indels using iCORN2 (http://icorn.sourceforge.net/). The

finished sequences were then annotated using Prokka [98].

Phylogenetic reconstruction and population structure analysis

The paired-end sequence files for each strain were mapped to the SL1344 reference genome

(FQ312003) [88] using the Rapid haploid variant calling and core SNP phylogeny pipeline

SNIPPY (version 3.0) (https://github.com/tseemann/snippy). The size of the core genome was

determined using snp-sites (version 2.3.3) [101], outputting monomorphic as well as variant

sites and only sites containing A,C,T or G. Variant sites were identified and a core genome var-

iation multifasta alignment generated. The core genome of 134 S. Typhimurium (3686476

nucleotides) (S2 Table) contained 17823 variant sites. The core genome (3739972 nucleotides)

of 131 S. Typhimurium non-ST36 contained 8382 variant sites. The sequence alignment of

variant sites was used to generate a maximum likelihood phylogenetic tree with RAxML using

the GTRCAT model implemented with an extended majority-rule consensus tree criterion

[102]. The genome sequence of S. Heidelberg (NC_011083.1) was used as an outgroup in the

analysis to identify the root and common ancestor of all S. Typhimurium strains as a previous

study has indicated both Heidelberg and Saintpaul serovars to be appropriate [103]. HierBaps

(hierarchical Bayesian analysis of Population Structure) [16] was used to estimate population

structure using three nested levels of molecular variation and 10 independent runs of the opti-

mization algorithm as reported previously [104]. The input for this analysis was the same SNP

variant matrix for the 131 strains with reference to SL1344 that was used to generate the

GTRCAT phylogeny above. Estimation of coverage for our dataset was by determination of

CCs with fewer than 100 allelic variants in 1679 whole genome sequences from human clinical

infections in the UK in 2014 to 2015, and approximately 20,000 non-UK S. Typhimurium
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whole genome sequences for which SRA accession numbers were available (accessed April

2020)[24]. The union of CCs and the proportion of sequences was reported.

In-silico genotyping

The presence of antibiotic resistance, virulence and plasmid replicon genes in short-read data

was determined by the mapping and local assembly of short reads to data-bases of candidate

genes using ARIBA [105]. The presence of candidate genes from the resfinder [106], VFDB

[107] and PlasmidFinder [108] databases was determined. Reads were mapped to candidate

genes using nucmer with a 90% minimum alignment identity. This tool was also used to deter-

mine the presence of specific genes or gene allelic variants. The results of the ARIBA determi-

nation of the presence or absence of the lpfD gene were confirmed using SRST2 [109] setting

each alternative form of the gene as a potential allele. SRST2 was also used to verify the ARIBA

findings of the VFDB data set, as the presence of orthologous genes in the genome was found

to confound the interpretation of results. Candidate SNPs in key genes associated with AMR

were determined from the SNP matrix created by SNIPPY and used for the phylogeny recon-

struction. Sites were then verified by interrogation of the assembled and annotated short-read

sequences.

Determination of hypothetically disrupted coding sequences (HDCS)

HDCS were identified in high-quality finished Pacbio sequences and previously published ref-

erence sequences by identifying putative altered open reading frames using the RATT annota-

tion transfer tool [110]. The S. Typhimurium strains SL1344 annotation (accession no.

FQ312003) was transferred to each assembled sequence and coding sequences identified as

having altered length were manually curated by comparison of aligned sequences visualised

using Artemis comparison tool (ACT) [111]. Genes that contained either a premature stop

codon or a frameshift mutation were classified as HDCS. The identified HDCS were used to

construct a database that could be used as a reference for SRST2 (above) to detect presence or

absence in short-read sequence data. Alleles were called based on matching to 99% sequence

identity and allowing one miss-match per 1000 nucleotides.

Determination of Delta Bitscore

Illumina short-read sequences were mapped to the SL1344 reference genome and annotated

using PROKKA and then analysed in a pairwise fashion against SL1344 using delta-bit-score

(DBS), a profile hidden Markov model based approach [33] with Pfam hidden Markov Models

(HMMs) [112]. The mean DBS per genome and percentage of genes with mutations in Pfam

domains (non-zero DBS) are reported.

Determination of Invasiveness Index

The invasiveness index [34] for each strain was calculated to scan for patterns of mutation

accumulation common to Salmonella lineages adapted to an invasive lifestyle. To calculate the

invasiveness index, Illumina reads were mapped to a core-genome reference using the snippy

pipeline above, and annotated using PROKKA. Protein sequences were then screened using

phmmer from the HMMER3.0 package [113] to identify the closest homologs to the 196 pre-

dictive genes used by the invasiveness index model. Missing gene sequences were set to NA, to

account for the possibilities of being missed during sequencing or misannotated. These genes

were then scored against profile hidden Markov models (HMMs) for these protein families

from the Eggnog database [34] using hmmsearch [113], to test for uncharacteristic patterns of
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sequence variation. Bitscores produced in the comparison of each protein sequence to its

respective protein family HMM were then used as input to the model.

Phage location and cargo in assembled long-read sequence

The location of prophage elements in assembled long-read sequences and published reference

genome was determined using PHASTER [114], which identified regions as being intact, ques-

tionable or incomplete. This yielded a total of 83 potential complete and partial sequences

across the 11 representative strains. Prophage sequences were annotated using PROKKA that

identified terminase, tail fibre, recombinase/integrase proteins capsid proteins, phage related

proteins, and hypothetical proteins.

Determination of recombination

Recombination was inferred by identifying regions of high SNP density from whole genome

alignments of short-read data to SL1344, using Gubbins [115]. The results were visualised

using Phandango [116] and related to the predicted prophage locations in the SL1344 genome.

Similar results were obtained using maximum likelihood inference using clonal frame [117].

Determination of the S. Typhimurium pangenome

The annotated assemblies of 131 predominantly S. Typhimurium ST19 isolates were used as

the input to the pangenome pipeline ROARY [118]. The presence or absence of genes was

determined without splitting orthologues. In order to characterise the contribution of pro-

phage and plasmids to the pangenome, genes were assigned to one of four categories, non-pro-

phage genes located on the chromosome, prophage genes, plasmid genes and undefined genes,

based on the similarity to annotated genes of complete and closed whole genome sequence of

eleven reference strains. Orthologous genes were identified based on> 90% nucleotide

sequence identity using nucmer [119]. A core-genome reference sequence (genes present in at

least 99% of reference strains), was also constructed and used to determine the invasiveness

index.

Estimation of gene flux rates

Genes were assigned a score based on their presence in strains within a specific clade. The

clade gene score was compared to the score determined for strains outside of the clade to

determine whether the gene was more prevalent within the clade than without. Genes were

classed as associated with the clade if their score was greater than the mean plus two standard

deviations of the non-cladal score (corresponding to the top 95% in a normal distribution).

The number of clade associate genes was compared with the number of SNPs associated

with a clade (this gives a measure of evolutionary time) to determine the level of gene flux for

the clade. The level of gene flux in the two first-level clades was then compared.

Prophage classification

PHASTER[114] curated prophage sequences were classified into species and genus-level

groupings based on the current criteria used by the Bacterial and Archaeal Viruses Subcom-

mittee of the International Committee on Taxonomy of Viruses (ICTV)[120]. At the species

level, genomes were clustered at 95% nucleotide identity over the whole genome length, mean-

ing that two genomes belong to two different species if they differ in more than 5% of their

genome. Clustering was performed with CD-HIT-EST at 95% nucleotide identity over 95% of

the alignment length (99% of alignment length of shorter sequence)[121] and with Gegenees, a
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pairwise nucleotide comparison tool, using the accurate settings of 200 bp fragment size and

100 bp step size[122]. The Gegenees output was used in combination with vConTACT2[123]

to classify the prophage sequences into new or existing genera. Briefly, coding sequences were

predicted with PROKKA[98] and transformed into a table linking genomes and their encoding

proteins. This table was used as input into vConTACT along with the Viral RefSeq database

v85[124]. vConTACT then used Diamond[125], Markov clustering MCL[126] and Cluster-

ONE[127] to predict viral clusters based on shared protein content. The output was visualised

using Cytoscape[128]. Genera were defined as vConTACT viral clusters which shared a signifi-

cant (>50%) nucleotide identity. The clusters were then compared to the current and pending

ICTV taxonomic classification (ictvonline.org) using blast and vConTACT viral cluster output

containing reference genomes and all prophage sequences were assigned to new or existing

taxa.

Assembly and comparison of pSLT plasmid sequence

Plasmid sequences were determined by assembling Illumina short-read sequences with

spades-3.8.0 using the plasmidSPAdes algorithm [129] with varying with k-mer sizes of 31, 41

and 51. Contigs larger than 70 kb were then compared against the NCBI blast database to iden-

tify forms of pSLT.

Determination of the distribution of representatives among the rest of the

world

A collection of 14,478 genomes from all available S. Typhimurium in EnteroBase to represent

the global diversity outside of the United Kingdom. These genomes met several criteria; they

were predicted to be serovar Typhimurium using SISTR software [130], were not ST36, the

country of isolation was listed as a country other than the "United Kingdom", and the genome

was within the HierCC:1100 (cEBG) ‘2’ cluster group (S7 Table). These genomes were grouped

according to their EnteroBase HierCC:100 cluster definition, which groups genomes together

if the nearest neighbour is no more 100 cgMLST alleles different [24]. We then included repre-

sentative genomes from this study and determined the proportion of defined cluster groups

contained at least one of the representative genomes described here.

Supporting information

S1 Fig. Phylogenetic relationship of S. Typhimurium and diverse S. enterica serotypes.

Mid-point rooted maximum likelihood phylogenetic tree based on the variation (SNPs) in the

core genome of 18 strains of Salmonella Typhimurium and 14 representative strain of diverse

S. enterica subspecies enterica serotypes, with reference to S. Typhimurium strain SL1344

genome sequence. S. Typhimurium strains (red lineages and text) are present in two clusters,

composed of 15 strains with isolates that are ST19, ST34, ST313, ST98 and ST568 and three

more divergent isolates of ST36. The phylogeny is rooted with respect to S. Heidelberg and

was calculated using SL1344 as a reference to create a core-genome variant-site alignment and

the GTRCAT model in RAxML.

(PDF)

S2 Fig. Distribution of 131 non ST36 isolates in this study in UK clinical isolates and non-

UK isolates from enterobase. Grapetree visualization based on EnteroBase cgMLST allele

profiles, including of (A) 1,693 S. Typhimurium isolates from clinical infections in the UK in

2014 and 2015, and (B) 14,760 genomes selected as the global diversity of S. Typhimurium out-

side of the United Kingdom in Enterobase database. Nodes are colour coded by EnteroBase
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HierCC HC100 cluster groups. HierCC groups containing non ST36 isolates in this study yel-

low circles. Scale indicates number of cgMLST alleles.

(PDF)

S3 Fig. Sequence variation in selected pathogenicity islands. The percent sequence variation

including SNPs and deletions in SPI-1, SPI-2, SPI-3, SPI-4, SPI-5 and SPI-6 are indicated from

0% (green) to 0.5% (red).

(PDF)

S4 Fig. Accessory genome with strong clade association. Gene families with a strong clade

association in clade α or β (A), or in one of the third level clades (B). Maximum likelihood phy-

logenetic tree and based on sequence variation (SNPs) in the core genome with reference to S.

Typhimurium strain SL1344 (left). Third-level clades are indicated and colour coordinated

with that in Fig 1. Genes in each clade were assigned a score based on the number of strains

containing the gene within the clade. This score was also calculated for the strains outside the

clade. Clade associated genes were defined as genes that had scores greater than the mean plus

two SD of the score for all other clades. Genes are colour coded based assignment to non-pro-

phage chromosomal (red), prophage (green), plasmid (blue), or undefined (grey).

(PDF)

S5 Fig. Gene flux rate metrics determined for non-singleton gene families first-level clades.

(PDF)

S1 Table. S. Typhimurium strain collection used in this study related to determine popula-

tion structures. Table can be viewed at https://www.dropbox.com/sh/dh84yyc4tguirw3/

AABnbbrSPtqEcjGY6IR6GggLa?dl=0.

(XLSX)

S2 Table. Presence of plasmid operons, AMR genes (Resfinder) and virulence genes

(VFDB) determined by in-silico genotyping using ARIBA software. The identifier column

corresponds to the study-identifier column in S1 Table. Presence of genes are indicated by ‘1’.

Table can be viewed at https://www.dropbox.com/sh/dh84yyc4tguirw3/

AABnbbrSPtqEcjGY6IR6GggLa?dl=0.

(XLSX)

S3 Table. Genome degradation in long-read reference strains. Potential hypothetically dis-

rupted coding sequences (HDCS) were identified in reference genomes though anomalies in

annotation transfer from the SL1344 reference sequence using RATT software and manual

curation to exclude false positive HDCS. Table can be viewed at https://www.dropbox.com/sh/

dh84yyc4tguirw3/AABnbbrSPtqEcjGY6IR6GggLa?dl=0.

(XLSX)

S4 Table. Summary of HDCS in S. Typhimurium main phylogroup. The presence of HDCS

alleles was determined in-silico using SRST2 reported in Fig 1. The study identifier refers to

isolates in S1 Table. Alleles are specified as wild-type (WT) or HDCS. In some cases, multiple

HDCS forms were determined to be present and these are denoted as HDCS1 or HDCS2 etc.

Table can be viewed at https://www.dropbox.com/sh/dh84yyc4tguirw3/

AABnbbrSPtqEcjGY6IR6GggLa?dl=0.

(XLSX)

S5 Table. Summary of DBS and Invasiveness Index analysis. Isolate identifier corresponds

to the identifier column in S1 Table. The mean delta bitscore (DBS) for the proteome of each

strain, the number of proteins with a DBS greater than ten. Invasiveness index for each isolate
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is indicated.

(XLSX)

S6 Table. Characteristics of prophage elements present in complete and closed whole

genome sequence of S. Typhimurium reference strains.

(DOCX)

S7 Table. Data used for construction of HierCC clusters with 14,478 genomes from S.

Typhimurium in EnteroBase to represent the global diversity outside of the United King-

dom.

(XLSX)
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62. Nuccio S-P, Bäumler AJ. Comparative Analysis of Salmonella Genomes Identifies a Metabolic Net-

work for Escalating Growth in the Inflamed Gut. mBio. 2014; 5(2). https://doi.org/10.1128/mBio.00929-

14 PMID: 24643865

63. Johnson R, Mylona E, Frankel G. Typhoidal Salmonella: Distinctive virulence factors and pathogene-

sis. Cell Microbiol. 2018; 20(9):e12939. Epub 2018/07/22. https://doi.org/10.1111/cmi.12939 PMID:

30030897.

64. Kingsley RA, Humphries AD, Weening EH, De Zoete MR, Winter S, Papaconstantinopoulou A, et al.

Molecular and phenotypic analysis of the CS54 island of Salmonella enterica serotype typhimurium:

identification of intestinal colonization and persistence determinants. Infect Immun. 2003; 71(2):629–

40. https://doi.org/10.1128/iai.71.2.629-640.2003 PMID: 12540539.
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