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This month: selected work from the 2018 RECOMBmeeting, organized by Ecole Polytechnique and held last
April in Paris.
Single-Cell Data Analysis:
Generalizable and Scalable
Visualization of Single Cells Using
Neural Networks
Hyunghoon Cho and Bonnie Berger, MIT;

Jian Peng, UIUC

Algorithmic Advance

Visualization algorithms are fundamental

tools for interpreting single-cell data. How-

ever, standard methods such as t-stochastic

neighbor embedding (t-SNE) are not scalable

to datasets with millions of cells, and the re-

sulting visualizations cannot be generalized

to analyze new datasets. We introduce net-

SNE, a generalizable visualization approach

that trains a lightweight neural network to

learn a mapping function from high-dimen-

sional single-cell gene expression profiles to

a low-dimensional visualization of potentially

millions of cells. Our work provides a frame-

work for bootstrapping single-cell analysis

from existing datasets (Cho et al., Cell

Systems 7, this issue, 185–191).

Biological Application

We benchmark net-SNE on 13 different sin-

gle-cell RNA-seq datasets and show that it

achieves visualization quality and clustering

accuracy that is comparable to t-SNE while

newly allowing previously unseen cells to

be mapped onto the same visualization.

The mapping function learned by net-SNE

can accurately position entire new subtypes

of cells and vastly reduce the runtime for

visualizing millions of cells.

Our work provides a frame-
work for bootstrapping sin-
gle-cell analysis from exist-
ing data sets.

What’s Next?

Inspecting the trained net-SNE models

may provide insights into the gene expres-

sion patterns underlying t-SNE-like visuali-

zations of single cells. As more single-

cell data become available (e.g., https://

www.humancellatlas.org/), our work may

contribute to learning a low-dimensional

‘‘reference’’ representation of all human cell

types to help researchers gain insights about

their own datasets.
Statistical Inference of Peroxisome
Dynamics
Cyril Galitzine and Olga Vitek, Northeastern

University; Pierre M. Jean Beltran and Ileana

M. Cristea, Princeton University

Algorithmic Advance

The evolution of the number of peroxisomes

in single cells wasmodeled with a stochastic

differential equation with three different

rates: the fission generation rate, the de

novo generation rate, and the degradation

rate. The inferred distributions of the rates

were obtained from count data simulta-

neously measured from multiple replicates.

A novel and fast parallel inference method

based on a particle filter was developed to

infer the rates. It directly targets the posterior

distribution of the rates while accounting

for rate heterogeneity between cells.

(Galitzine et al., In Proc. RECOMB 2018,

54–74, https://doi.org/10.1007/978-3-319-

89929-9_4).

Biological Application

Our approach can readily determine the

peroxisome rates on additional cell types

in which peroxisome functions are critical

(e.g., neurons). We envision applications to

human disease models to better understand

peroxisome homeostasis, such as in neuro-

degenerative disease models. Moreover,

application to conditions of cellular stress

can give unprecedented detail of the regula-

tion of peroxisomes biogenesis.

We envision applications to
human disease models for
better understanding peroxi-
some homeostasis.

What’s Next?

The inference procedure can be expanded

to other organelles by including additional

reactions such as fission. This generalization

and the use of multicolor live microscopy to

simultaneously visualize several organelles

will be explored to achieve a systems view

of organelle biophysical properties.
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Machine Learning: Feature
Exclusion for Digital Tissue
Deconvolution
Franziska Görtler, Stefan Solbrig, Tilo

Wettig, Peter J. Oefner, Rainer Spang,

and Michael Altenbuchinger, University of

Regensburg

Algorithmic Advance

Digital tissue deconvolution (DTD) ad-

dresses the following computational prob-

lem: given a bulk expression profile of a tis-

sue that consists of multiple cell types such

as tumor cells, lymphocytes, endothelial

cells, or macrophages, what are the abun-

dances of these cells in the tissue? For

DTD, we must look at the right set of marker

genes—most importantly, genes whose

expression differs between tissue and refer-

encemust be excluded from analysis. Which

are those?

We describe a novel machine learning

algorithm that learns the cellular fractions in

a tissue while excluding genes for which

the linear deconvolution equation does not

hold (Görtler et al., In Proc. RECOMB 2018,

75–89, https://doi.org/10.1007/978-3-319-

89929-9_5). Our algorithm quantifies large

cell fractions as accurately as competing

methods and outcompetes them in the

detection of rare cell types and in the

distinction of similar cell types such as

T cell subpopulations.

Biological Application

Our method can be used to quantify cells of

a specific type such as tumor cells, B cells,

T cells, and macrophages in a tissue using

only a bulk expression profile. It can

also be used to identify the molecular fea-

tures that are most informative for such a

deconvolution.

For DTD, wemust look at the
right set of marker genes.

What’s Next?

As more single-cell RNA sequencing data

become available, our method can learn

from these additional data, making DTD

more and more reliable.
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Metagenomics: Sample
Identification via Genome-
skimming
Shahab Sarmashghi, Vineet Bafna, and Sia-

vash Mirarab, University of California, San

Diego; Kristine Bohmann and M. Thomas

P. Gilbert, University of Copenhagen

Algorithmic Advance

Skmer utilizes genome-skins, low-coverage

genomic sequencing information to rapidly

and accurately compute genomic distance

between two organisms, and to place an or-

ganism in a phylogeny. Skmer is an align-

ment and map-free approach that uses the

k-mer decomposition of reads. It imple-

ments a novel method to estimate genome

length, sequencing error, and sequence

coverage from the k-mer frequency profile,

combines them with the Jaccard index

between genome-skims to estimate the

genomic distances, and uses the distances

for phylogenetic inference (Sarmashghi

et al., bioRxiv, https://doi.org/10.1101/

230409).

Biological Application

The ability to quickly and inexpensively

describe the taxonomic diversity in an envi-

ronment is critical in this era of rapid climate

and biodiversity changes. Meta-barcoding

via DNA sequencing of taxonomically infor-

mative markers has limited phylogenetic

resolution. Skmer uses inexpensive low-

coverage WGS data and shows great accu-

racy in estimating genomic distances,

finding the exact/closest match to a query

sample in a reference set of genome-skims,

and phylogenetic reconstruction.

Skmer. shows great accu-
racy in estimating genomic
distances, finding the exact/
closest match to a query
sample in a reference set of
genome-skims, and phylo-
genetic reconstruction.

What’s Next?

We need algorithms to remove contamina-

tion from external sources of DNA in

genome-skims from biological samples. It

remains to be explored if Skmer method-

ology can be extended to analyze mixed

genome-skims of multiple taxa.
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Cancer Genomics: UNCOVERing
Complementary Functional Cancer
Alterations
Rebecca Sarto Basso and Dorit Hochbaum,

UC Berkeley; Fabio Vandin, University of

Padova

Algorithmic Advance

Identifying groups of cancer alterations with

the same functional effect provides insights

into the molecular mechanisms of the dis-

ease. To identify such groups, we propose

a combinatorial formulation for the problem

of finding mutually exclusive alterations

associated with a functional target. We intro-

duce a tool, UNCOVER, that implements two

efficient algorithms to solve the problem and

that identifies groups of alterations that may

not be identified by analyzing alteration data

only (Basso et al., arXiv, arXiv:1803.09721,

https://arxiv.org/abs/1803.09721).

Biological Application

On simulated data, UNCOVER finds groups

of complementary alterations that are signif-

icantly associated with functional targets.

On cancer data, UNCOVER finds biologically

meaningful groups with stronger association

to the target profile than the groups of alter-

ations obtained by the state-of-the-art

method and is much faster than the latter.

The efficiency of UNCOVER enables the

analysis of large datasets from high-

throughput functional screens, such as the

one from Project Achilles with thousands of

target profiles and tens of thousands of alter-

ations. On such a dataset, UNCOVER iden-

tifies several statistically significant associa-

tions between mutually exclusive groups of

alterations and functional profiles, with an

enrichment in well-known cancer genes

and in known cancer pathways.

UNCOVER finds groups of
complementary alterations
that are significantly asso-
ciated with functional tar-
gets. UNCOVER enables
the analysis of large datasets
from high-throughput func-
tional screens.

What’s Next?

We anticipate UNCOVER being used to

analyze recent high-throughput functional

screens. Future work includes the integra-

tion of additional data, such as protein-pro-

tein interaction networks.
Cancer Genomics: ModulOmics:
Integrating Multi-omics Data to
Identify Cancer Driver Modules
Dana Silverbush, Tel Aviv University and

Simona Cristea, Dana Farber Institute

and Harvard (these authors contributed

equally); Gali Yanovich, Tamar Geiger, Tel

Aviv University; Niko Beerenwinkel, ETH

Zurich and Roded Sharan, Tel Aviv Univer-

sity (these authors contributed equally)

Algorithmic Advance

The identification of molecular pathways

driving cancer progression is a fundamental

problem in tumorigenesis. Its solution can

substantially foster our understanding

of cancer mechanisms and inform the

development of targeted therapies. Current

approaches to address this problem use pri-

marily somatic mutations, not fully exploiting

additional layers of molecular information.

Here, we describe ModulOmics, a method

for de novo identification of cancer driver

pathways, or modules, by integrating multi-

ple data types into a single probabilistic

model. ModulOmics simultaneously opti-

mizes the module scores derived from

all the data types using a two-step optimiza-

tion procedure that combines integer linear

programming with stochastic search (Silver-

bush et al., bioRxiv, https://doi.org/10.1101/

288399).

Biological Application

ModulOmics identifies highly functionally

connected genemodules enriched with can-

cer driver genes, outperforming state-of-

the-art methods. The inferred modules reca-

pitulate known molecular mechanisms and

suggest novel subtype-specific functional-

ities. These findings are supported by an in-

dependent patient cohort, as well as inde-

pendent proteomic and phosphoproteomic

datasets.

ModulOmics [is] a method
for de novo identification
of cancer driver pathways.
by integrating multiple data
types into a single probabi-
listic model.

What’s Next?

ModulOmics is a flexible framework, allow-

ing the addition of new omics layers to infer

cancer driver modules. It can be further

extended to integrate multiple datasets in

other contexts, such as the inference of pro-

tein complexes.

https://doi.org/10.1101/230409
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METAGENOMICS: Reconstruction
of Microbial Strains Using
Representative Reference
Genomes
Zhemin Zhou, Nina Luhmann, Nabil-Fareed

Alikhan, and Mark Achtman, University of

Warwick

Algorithmic Advance

Current reference-based methods yield

inaccurate estimates of the species repre-

sented in metagenomic sequences due to

insufficient sensitivity or multiple false posi-

tives. Both are especially problematic for

the accurate identification of low-abundance

microbial species, e.g., screening for ancient

bacterial pathogens in skeletal remains. We

present SPARSE, a new method which im-

proves taxonomic assignments of metage-

nomic reads (Zhou et al., In Proc. RECOMB

2018, 225–240, https://doi.org/10.1007/

978-3-319-89929-9_15). SPARSE replaces

existing biased reference databases by

grouping genomes into hierarchical clusters

based on average nucleotide identity (ANI).

Reads are assigned to these clusters using

a probabilistic model, which further reduces

false-positive assignments by penalizing

non-specific mappings of reads from un-

known sources.

Biological Application

SPARSE yielded greater precision at spe-

cies-level classification than multiple other

methods in multiple simulation studies. For

example, SPARSE successfully differenti-

ated multiple co-existing E. coli strains in

one sample. SPARSE could identify ancient

pathogens in archaeological metagenomes

with only %0.02% abundance, while other

methods either missed those pathogens or

also reported other, non-existent species.

SPARSE could identify
ancient pathogens in archae-
ological metagenomes with
only %0.02% abundance.

What’s Next?

SPARSE will be integrated into EnteroBase,

an open-access database of 250,000

assembled bacterial genomes from several

important pathogens. This will support the

reconstruction of the relationships between

ancient microbial genotypes within the

context of global phylogeography of extant

bacteria and support analyses dedicated

for reconstructing evolutionary history.
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