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ABSTRACT
Background. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the
cause of coronavirus disease 2019 (COVID-19), has spread globally and is being
surveilled with an international genome sequencing effort. Surveillance consists of
sample acquisition, library preparation, and whole genome sequencing. This has
necessitated a classification scheme detailing Variants of Concern (VOC) and Variants
of Interest (VOI), and the rapid expansion of bioinformatics tools for sequence
analysis. These bioinformatic tools are means for major actionable results: maintaining
quality assurance and checks, defining population structure, performing genomic
epidemiology, and inferring lineage to allow reliable and actionable identification and
classification. Additionally, the pandemic has required public health laboratories to
reach high throughput proficiency in sequencing library preparation and downstream
data analysis rapidly. However, both processes can be limited by a lack of a standardized
sequence dataset.
Methods. We identified six SARS-CoV-2 sequence datasets from recent publications,
public databases and internal resources. In addition, we created a method to mine
public databases to identify representative genomes for these datasets. Using this novel
method, we identified several genomes as either VOI/VOC representatives or non-
VOI/VOC representatives. To describe each dataset, we utilized a previously published
datasets format, which describes accession information and whole dataset information.
Additionally, a script from the same publication has been enhanced to download and
verify all data from this study.
Results. The benchmark datasets focus on the two most widely used sequencing
platforms: long read sequencing data from theOxfordNanoporeTechnologies platform
and short read sequencing data from the Illumina platform. There are six datasets:
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three were derived from recent publications; two were derived from data mining public
databases to answer common questions not covered by published datasets; one unique
dataset representing common sequence failures was obtained by rigorously scrutinizing
data that did not pass quality checks. The dataset summary table, data mining script
and quality control (QC) values for all sequence data are publicly available on GitHub:
https://github.com/CDCgov/datasets-sars-cov-2.
Discussion. The datasets presented here were generated to help public health labora-
tories build sequencing and bioinformatics capacity, benchmark different workflows
and pipelines, and calibrate QC thresholds to ensure sequencing quality. Together,
improvements in these areas support accurate and timely outbreak investigation and
surveillance, providing actionable data for pandemic management. Furthermore, these
publicly available and standardized benchmark data will facilitate the development and
adjudication of new pipelines.

Subjects Bioinformatics, Virology, COVID-19
Keywords Standardization, sha256, Benchmarking, WGS, COVID-19

INTRODUCTION
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which caused the
coronavirus disease 2019 (COVID-19) pandemic, has infectedmore than 456million people
globally resulting in over sixmillion deaths as ofMarch 14th, 2022 (https://covid19.who.int/).
Since the first genomic sequence of SARS-CoV-2 was made publicly available on January
10th, 2020, whole genome sequencing (WGS) and bioinformatics analyses have been
performed extensively to characterize and surveil the virus’s evolution. The SARS-
CoV-2 virus has undergone rapid evolutionary expansion, leading to the emergence
of discrete variants, some of which exhibit altered infectivity, clinical severity, or decreased
susceptibility to medical treatments (Otto et al., 2021; Pascall et al., 2021; Abdool Karim &
De Oliveira, 2021). The observed waves of novel variants of SARS-CoV-2, with greater
transmissibility than the original strain, including B.1.1.7 (Alpha) and B.1.617.2 (Delta),
B.1.1.529 (Omicron) has emphasized the need for real-time sequence-based virus
surveillance (Davies et al., 2021; Elliott et al., 2021). Such surveillance has its roots in
genomic epidemiology, which had already shown utility and impact for surveillance
of other infectious disease agents including but not limited to bacterial foodborne
organisms (PulseNet, 2016), influenza (Shu & McCauley, 2017), ebola (Quick et al., 2016),
and norovirus (Vega et al., 2011).

In 2020, many national viral genomics consortia were established to coordinate
SARS-CoV-2 genome sequencing support of public health response efforts including:
the Coronavirus Disease 2019 (COVID-19) Genomics UK Consortium (COGUK, 2020),
SARS-CoV-2 Sequencing for Public Health Emergency Response, Epidemiology and
Surveillance (SPHERES) in the USA (CDC, 2020a;CDC, 2020b;CDC, 2020c), the Canadian
COVID Genomics Network (CanCOGeN, 2020), and the Indian SARS-CoV-2 Genomics
Consortium (INSACOG, 2020). Such consortia require substantial economic, trained
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personnel, equipment, and technical resources, which present considerable barriers to
many countries, but are necessary for global control of SARS-CoV-2 outbreaks (Helmy,
Awad & Mosa, 2016; Brito et al., 2021; Chen et al., 2022). Leadership from these consortia
in their respective countries ledmany public health laboratories to start building sequencing
and bioinformatics capacity for real-time genomic surveillance of SARS-CoV-2.One central
challenge to coordinating these efforts, which is not unique to SARS-CoV-2 surveillance,
has been the diversity of high-throughput sequencing platforms employed by various
laboratories, varying sample preparation methods, and different amplicon strategies. The
sequencing platforms includeOxfordNanopore, Illumina, Pacific Biosciences, Ion Torrent;
sample preparation methods include amplicon-based, shot-gun, and metagenomics;
amplicon strategies include ARTIC V3, ARTIC V4, and SWIFT. Therefore, it is necessary
to evaluate whether the sequencing platform that generates data influences downstream
bioinformatic processing of consensus sequences in any use-cases, e.g., genomic surveillance
or epidemiology. Additionally, the sample preparation methods differ widely, including
metagenomic, amplicon and hybrid capture, each of which may impact the creation of
assembled sequences or consensus sequences.

Standardization is further complicated by the large number of bioinformatics
applications that were either expanded or developed from scratch to rapidly meet the needs
of the COVID-19 pandemic. For genomic epidemiology, these platforms include Augur,
Auspice, and UShER (Turakhia et al., 2021; Hadfield et al., 2018). For lineage detection,
these platforms include Pangolin and Nextclade (O’Toole et al., 2021;Hadfield et al., 2018).
For QC, many pipelines use different, modular combinations of open-source software
including FastQC, NCBI human scrubber, Kraken, Trimmomatic, BBDuk, SeqyClean,
SAMtools, and Viral Annotation DefineR (VADR), and Artic field bioinformatics (Schäffer
et al., 2020; Li et al., 2009; Zhbannikov et al., 2017; BBMap, 2021; Bolger, Lohse & Usadel,
2014; Wood & Salzberg, 2014; Katz et al., 2021; Andrews, 2010; ARTIC, 2020). A more
comprehensive review of the variety of software used was recently published by Hu et
al. (2021). There are also many instances of commercial software and/or closed source
packages that were rapidly developed, including Illumina’s DRAGEN, Clear DxTM WGS
SARS-CoV-2 Bioinformatics Pipeline (BIP), EPISEQ SARS-COV-2 (bioMérieux, Marcy-
l’Étoile, France), and CLC Genomics Workbench (QIAGEN, Hilden, Germany).

Critically, a common set of sequence data has not been staged for all available
bioinformatics applications to compare their performance. Furthermore, laboratories
lack standardized data with which to test their competencies in these analyses, or even
train personnel, which is a common requirement for compliance with quality management
systems.

To address this gap, we propose specific SARS-CoV-2 sequencing benchmark datasets
to aid laboratories in building bioinformatics infrastructure, validating cross-platform
sequence analyses, evaluating bioinformatics pipelines, and verifying QC procedures.
These datasets may also serve as a training or competency resource for new laboratory staff
to understand features of sequence data that either pass or fail common QC metrics.
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MATERIALS & METHODS
Datasets
Each dataset listed in Table 1 was designed to address a specific need, following the datasets
format described in Timme et al. (2017). Briefly, the tab-separated file format organizes
information into two sections: the header and the data. The header contains metadata
describing the whole dataset including a unique name, the source of data, and the intended
use of the dataset. Directly following the header, the data section includes sample-specific
information such as sample name, NCBI accessions, cluster information, and hashsum
values of each sequencing read file to be downloaded. This second section may also contain
additional, optional columns (such as GISAID accession, lineage, or amplicon strategy)
relevant to individual datasets. Essentially, all FASTQ files for sequences in the datasets are
stored on NCBI SRA while a simple spreadsheet with accessions is stored in our software
repository (Cock et al., 2010). A summary of the entire workflow used to identify and
validate sequences to be included in the datasets is provided in Fig. 1.

Download script
The script to download each dataset is called GenFSGopher.pl, as described in Timme
et al. (2017). GenFSGopher.pl reads a spreadsheet of the user’s choosing and downloads
the associated data from the specified NCBI accession. Spreadsheets for each dataset are
available in the datasets folder of the repository. Each file downloaded by the script is
checked against its unique identifier of hashsum, ensuring that the data downloaded on
one computer is exactly the same as another computer.

QC metrics and thresholds
Here, we defined specific metrics for both the raw reads and resulting consensus assembly
that each sequencemust pass for inclusion to our benchmark datasets. There are differences
in QC metric thresholds set by pipelines and between the major public repositories of
SARS-CoV-2 which cannot be easily accounted for. We summarized the most common
metric cutoffs used for our purposes in Table 2.

Sequence quality evaluation
We evaluated the quality of the sequences for the six datasets through three steps. In the
first step, we used FastQC to evaluate the basic read quality of the FASTQ files (Fig. 1,
Table 2: 1–3). In the second step, we used the genome assembly of Wuhan-1 (accession
number: NC_045512.2) as the reference and evaluated the sequencing depth per nucleotide
across the total length of the Wuhan reference (Fig. 1, Table 2: 4–8). Metrics 4–6 in Table
2 indicated the average depth per nucleotide, the variation of depth as well as the degree of
depth variation. Metrics 7–8 in Table 2 were used to estimate the number of ambiguous
nucleotides thatwould be observed in the downstreamconsensus assembly. In the third step,
we tested all six datasets using the TheiaCoV (formerly ‘Titan’) workflow (v1.4.4) (Libuit
et al., 2022) with the default UShER (v0.3.0) as the inference engine (Turakhia et al., 2021).
TheiaCov is included in our existing bioinformatic infrastructure, is already being used by
somepublic health laboratories, reports our determinedmetrics of interest, and summarizes
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Table 1 The summary description for six datasets. Each dataset is numbered, named, and given a description. The intended use is also listed.

Dataset Name Description Intended use Reference

1 Boston outbreak A cohort of 63 samples from
a real outbreak with three in-
troductions, metagenomic ap-
proach

To understand the features of
virus transmission during a
real outbreak setting

Lemieux et al. (2021)

2 CoronaHiT rapid A cohort of 39 samples pre-
pared by 18 h wet-lab pro-
tocol and sequenced by two
platforms (Illumina vs Min-
ION), amplicon-based ap-
proach

To verify that a bioinformat-
ics pipeline finds virtually no
differences between sequences
from the same genome run on
different platforms.

Baker et al. (2021)

3 CoronaHiT routine A cohort of 69 samples pre-
pared by 30 h wet-lab pro-
tocol and sequenced by two
platforms (Illumina vs Min-
ION), amplicon-based ap-
proach

To verify that a bioinformat-
ics pipeline finds virtually no
differences between sequences
from the same genome run on
different platforms.

Baker et al. (2021)

4 VOI/VOC lineages A cohort of 16 samples from
11 representative CDC de-
fined VOI/VOCa lineages as of
05/30/2021, amplicon-based
approach

To benchmark lineage-calling
bioinformatics software, espe-
cially for VOI/VOCs.

This study

5 Non-VOI/VOC lineages A cohort of 39 samples from
representative non VOI/VOCa

lineages, amplicon-based ap-
proach

To benchmark lineage-calling
bioinformatics software, non-
specific to VOI/VOCs.

This study

6 Failed QC A cohort of 24 samples failed
basic QC metrics, covering
8 possible failure scenarios,
amplicon-based approach

To serve as controls to test
bioinformatics QC cutoffs.

This study

Notes.
aVOI, variant of interest; VOC, variant of concern

additional QC metrics (Table 2: 9–19) to indicate four aspects: (a) input data size after
trimming and human read removal, (b) conflicting read taxonomy, i.e., contamination,
(c) amino acid changes especially spike protein mutations, (d) lineage or clade information
(Fig. 1). Similar to most SARS-CoV-2 workflows, Pangolin is incorporated into TheiaCov.

Dataset 1—an outbreak
This dataset describes an outbreak resulting from three independent introductions of
SARS-CoV-2 in a large metropolitan city (Lemieux et al., 2021). The intended use of
these two datasets is to evaluate methods for phylogenetic reconstruction, as the resulting
phylogenetic tree should accurately delineate three clusters and an outgroup. The expected
tree, placement of each sequence and the outgroup are labeled in the ‘‘tree’’ row of the
dataset table. It is important to note this study was conducted early in the COVID-19
pandemic, prior to the widespread adoption of amplicon-based sequencing (ARTIC, Swift,
etc.), and therefore utilized a shotgun metagenomic approach.
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Figure 1 Automated workflow for identifying representative sequences for datasets. Sequences go
through several quality checks before being considered as part of a (continued on next page. . . )

Full-size DOI: 10.7717/peerj.13821/fig-1
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Figure 1 (. . .continued)
benchmark dataset. These checks include lineage agreement with Pangolin, a minimum Phred score, a
minimum depth of coverage, a check with the software TheiaCov, a check of the amplicon strategy, a min-
imization of the count of SNPs in regards to a reference genome, and a check against the spike region’s
mutations. Asterisks denote steps taken with in-house python scripts.

Table 2 QCmetrics.QC metrics are shown with their thresholds, which bioinformatics tool we used, and the QC category.

No. QCMetrics Cutoff Tool (version) Category

1 total reads NC FastQC Step 1: Fastq quality check
2 read length NC FastQC Step 1: Fastq quality check
3 average phred score >25 FastQC Step 1: Fastq quality check
4 mean depth per nucleotide (MDN) >10 Samtools Step 2: Depth check
5 standard deviation for MDN NC Samtools Step 2: Depth check
6 coefficient of variation for MDN NC Samtools Step 2: Depth check
7 number of nucleotides with depth <10 (for Illumina) <3000 Samtools Step 2: Depth check
8 number of nucleotides with depth <20(for nanopore) <3000 Samtools Step 2: Depth check
9 number of paired-end reads NC Titan 1.4.4 Step 3: Bioinformatics workflow check
10 assembly total length >29400 Titan 1.4.4 Step 3: Bioinformatics workflow check
11 ambiguous Ns <10% Titan 1.4.4 Step 3: Bioinformatics workflow check
12 assembly mean coverage >25 Titan 1.4.4 Step 3: Bioinformatics workflow check
13 % mapped to the Wuhan reference >65% Titan 1.4.4 Step 3: Bioinformatics workflow check
14 VADR alert number <=1 Titan 1.4.4 Step 3: Bioinformatics workflow check
15 nextclade_aa_dels NC Titan 1.4.4 Step 3: Bioinformatics workflow check
16 nextclade_aa_subs NC Titan 1.4.4 Step 3: Bioinformatics workflow check
17 nextclade_version NC Titan 1.4.4 Step 3: Bioinformatics workflow check
18 pango_lineage NC Titan 1.4.4 Step 3: Bioinformatics workflow check
19 pangolin_version NC Titan 1.4.4 Step 3: Bioinformatics workflow check

Notes.
NC, not a criterion.
These values are reported but not used as criteria for passing or failing a sample.

Datasets 2 and 3—multiple platforms
We selected these data from Baker et al. (2021), which describes a novel library
preparation method for SARS-CoV-2 for sequencing called Coronavirus High Throughput
(CoronaHiT). CoronaHiT can provide flexible throughput using either Illumina or
Nanopore technology, which allows sequencing up to 96 samples on Nanopore or 2880
samples on Illumina in a single experiment and generating more even coverage between
multiplexed samples. Following the CoronaHiT library preparation, the genomes were
sequenced in parallel with both the Illumina and Oxford Nanopore Technologies (ONT)
platform. The authors also supply genome sequence data from the ONT platform using
the standard library preparation method, known as ‘‘LoCost’’ that can sequence 11-95
samples with one negative control using the Native Barcoding Expansion 96 kit (Quick,
2020). Therefore, each genome in datasets 2 and 3 has been sequenced by three approaches
(Illumina CoronaHiT, Nanopore CoronaHiT and Nanopore LoCost). Baker et al. (2021)
further described separate ‘‘rapid’’ and ‘‘routine’’ methods for CoronaHiT, which are also
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reflected in datasets 2 and 3, respectively. The difference between ‘‘rapid’’ and ‘‘routine’’
methods is the run time when using MinION. The ‘‘rapid’’ version ran for 18 hrs, while
‘‘routine’’ version ran for 30 hrs. The intended use of these two datasets is to verify the
consistency of bioinformatics applications for generating consensus sequences from input
data produced with various library strategies or sequencing technology.

Dataset 4—lineages
This dataset contains one genome per focal lineage of SARS-CoV-2, named according to
the PANGO nomenclature. Important lineages in this paper are defined as a CDC-specified
variant of concern (VOC) or variant of interest (VOI) lineage as of June 15th, 2021 (‘‘SARS-
CoV−2 Variant Classifications and Definitions’’, 2021). At that time, the list included 10
PANGO lineages: six VOCs (B.1.1.7, B.1.351, B.1.427, B.1.429, B.1.617.2, P.1) and four
VOIs (B.1.525, B.1.526, P.2, B.1.617.1). Using CDC internally curated consensus sequences
(Table S1) for each lineage as the reference, we developed an automatic workflow to select
representative Illumina paired-end reads generated with ARTIC V3 primers from NCBI
SRA that satisfied our QC metric cutoffs. See the automated data mining workflow section
below for more details. Additionally, we verified that a corresponding consensus sequence
record was also present in GISAID EpiCov. This dataset is intended for benchmarking
PANGO lineage-assignment pipelines, particularly for those classified asVOI/VOC lineages.

Dataset 5—more lineages
This dataset contains a complementary selection of 39 non-VOI/non-VOC lineages,
chosen from a collection of CDC internally curated consensus sequences. In addition
to raw sequencing reads, accessions to the consensus genome sequences available in
both GISAID and NCBI Reference Sequence Database (RefSeq) for each sample in this
dataset are provided. The intended use for this dataset is to benchmark lineage-assignment
bioinformatics pipelines, nonspecific to VOI/VOCs. Lineages were assigned to all sequences
using the Pangolin v3.1.3 classification software (O’Toole et al., 2021). All sequences were
aligned to a SARS-CoV-2 reference genome (NCBI accession number: MT019531) using
the SSW library, an extension of Farrar’s Striped Smith-Waterman algorithm (Zhao et
al., 2013). Representative sequences for each lineage were obtained to avoid artifacts
introduced from the aligned and classified sequences by taking the earliest sample from
the most abundant genome alignment profile (sorted by genome length) per lineage.

Dataset 6—QC failures
Sequence data that failed at least one QC metric described below were manually selected
for this dataset from a large collection of sequence runs performed by the CDC and Utah
Public Health Laboratory for national surveillance. These QC failures include low Phred
score, low coverage breadth, low mean coverage depth, human sequence contamination,
long stretches of ambiguous nucleotides in the consensus (>100 Ns in a row), and amplicon
dropout. All human contamination was anonymized by replacing patient read data with
the corresponding sequence from a published reference. Briefly, reads containing human
sequences were first separated using NCBI’s Human Read Removal Tool (Katz et al., 2021)
and mapped to the T2T reference genome (Nurk et al., 2022) using bowtie2 (Langmead
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& Salzberg, 2012). The sequences of mapped read pairs were then replaced with aligned
reference sequence and the anonymized reads subsequently recombined with the remaining
non-human reads. In this way, Personal Identifiable Information (PII) has been removed
from the dataset while retaining observed frequency and location of human reads. The
intended use of this dataset is to help calibrate bioinformatics pipelines against common
quality control thresholds for analyses or submission to public data repositories.

AUTOMATED DATA MINING WORKFLOW
To find genomes that met eligibility criteria for the VOC/VOI dataset, a custom workflow
which included in-house python scripts was developed, noted with an asterisk in Fig. 1. To
begin, 383,000 consensus genomes from the GISAID database assigned to each designated
VOC/VOI were downloaded on April 23rd, 2021. Initially, Pangolin (v2.4.2) was run to
confirm the lineage was unchanged from the time of submission using PangoLEARN
(container dated 2021-05-19).

For each VOC/VOI lineage, a multi-FASTA file was created by filtering the original
file containing 383,000 sequences using seqkit with the subcommand grep (v1.0) (Shen
et al., 2016). Next, Snippy (v4.3.8) was run on the multi-FASTA file against the internal
CDC reference sequence (Table S1). These data mining bioinformatics workflows were
incorporated on our GitHub repository. For each VOI/VOC lineage, the workflow output
four metrics: number of single nucleotide polymorphisms (SNPs) and LowCov for each
individual sequence, a SNP range and LowCov range for the multi-FASTA (Seemann,
2019). LowCov indicated the number of low coverage sites with a depth cutoff of 10. We
selected the 5 samples for each VOI/VOC lineage whose GISAID consensuses have the
fewest number of SNPs and LowCov from the corresponding reference. We linked the
selected GISAID consensus to the NCBI Sequence Read Archive (SRA) accession. Next,
the raw reads from each sample’s SRA accession were run through TheiaCov v1.4.4, using
the Terra.bio interface, to ensure that they met our minimum QC thresholds (Table S2).
As part of TheiaCov’s workflow, Pangolin (v3.1.3; container dated 2021-06-15) was rerun
on samples with UShER (v0.3.1) being used as the inference engine for lineage calls. This
version of Pangolin notably utilizes Scorpio (v0.3.1) and Constellations (v0.0.5). If the read
sequences failed any of our QC thresholds, we removed them from consideration until we
found the most representative genome for each VOI/VOC lineage. In some cases, we had
to analyze all publicly available sequences for a specific lineage to meet our goal.

We also confirmed that the selected SARS-CoV-2 sequences were paired-end,
sequenced by the Illumina platform, and used ARTIC V3 primers for amplification
through querying their SRA run accessions in the NCBI SRA page. Instead of manually
checking this information, we generated another automatic process using the browser
automation package Selenium (v3.141.0) for Python3 to harvest the pertinent information
(Muthukadan, 2018). This script, named NCBI_Scraping.py, accounted for differences in
the location and description of the construction protocol (i.e., Artic protocol V3, ARTIC
V3 PCR-tiling of viral cDNA, ARTIC v3 amplicons etc.). From this process a CSV file
containing a list of SRR accessions that met our criteria was generated. The methods for
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our entire automated data mining workflow are encapsulated in scripts that are available
in the project repository including a readme.md file describing how to use them.

RESULTS AND DISCUSSION
Datasets
We provide the community with six benchmark datasets of SARS-CoV-2 genomic
sequencing data that can be used for a variety of applications (Table 1). These curated
datasets consist of a defined outbreak (dataset 1), different sequencing approaches
and platforms (dataset 2 and 3), different lineages (datasets 4 and 5), and commonly
encountered sequencing failures (dataset 6). We also provide a script that downloads the
data behind these datasets. Our benchmark datasets can be applied to many different
use-cases, such as bioinformatics pipeline evaluation, QC verification, cross sequencing
platform validation, personnel training, or competency testing. We hope this effort
will facilitate public health laboratories at different development stages to build robust
sequencing and bioinformatics infrastructure for accurate real-time sequence-based virus
outbreak investigation and surveillance.

These benchmark datasets can be accessed at https://github.com/CDCgov/datasets-sars-
cov-2. To ensure consistency, the benchmark data have been downloaded independently
onto different computers at multiple institutions and have been confirmed to be identical.
Continuous integration with GitHub Actions is maintained, such that whenever the
repository changes, a remote computer at GitHub downloads all the datasets and checks
them against the hashsums.

Future datasets
As the SARS-CoV-2 pandemic continues, new important lineages are certain to emerge,
and additional lineages can be added to these benchmark datasets as needed with the
use of version control on GitHub. This platform is also able to accept new benchmark
datasets that address scenarios not covered by our current collection, such as replicate
sequencing following amplification with varied primer sets. Users can prepare datasets
for consideration by copying our spreadsheet formula, adding their own data to it, and
submitting it to the GitHub repository via a pull request. More detailed instructions
are available in our GitHub repository. Spreadsheets of new benchmark datasets will be
evaluated to confirm that all required fields have been provided in the correct format for
the GenFSGopher.pl script, and for data integrity via a hashsums for the expected sequence
files downloaded from the SRA. If the dataset passes these criteria, then we can use the
pull request feature in GitHub to include these new entries in the repository. In the future,
some of these checks may be automated using continuous integration GitHub Actions. In
this way, we hope that this GitHub repository becomes a central location for SARS-CoV-2
benchmark datasets.

CONCLUSION
This work describes six benchmark datasets of importance to the global effort in tracking
ongoing SARS-CoV-2 evolution and in public health surveillance. These datasets are useful
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for testing bioinformatics pipelines, both those already established and in production
as well as those under development. In addition, these data can be used as a resource
for training laboratory personnel and building regional sequencing capacity. Under each
of these circumstances, individual datasets can assist users to: test phylogenetic signals,
corroborate cross-platform chemistries, confirm SARS-CoV-2 lineage designations, and
verify QC thresholds.

By adopting an open access format this effort helps set the stage for future genomic
datasets for SARS-CoV-2 to be included in this publicly available benchmarking repository
available via GitHub. Additionally, we have also developed a mechanism through GitHub
to accept new benchmark datasets through standard repository pull requests, making the
repository a central location for benchmark datasets to support SARS-CoV-2 bioinformatic
analyses.
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