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Abstract. Exploring the genetic diversity of microbes within the envi-
ronment through metagenomic sequencing first requires classifying these
reads into taxonomic groups. Current methods compare these sequenc-
ing data with existing biased and limited reference databases. Several
recent evaluation studies demonstrate that current methods either lack
sufficient sensitivity for species-level assignments or suffer from false pos-
itives, overestimating the number of species in the metagenome. Both
are especially problematic for the identification of low-abundance micro-
bial species, e. g. detecting pathogens in ancient metagenomic samples.
We present a new method, SPARSE, which improves taxonomic assign-
ments of metagenomic reads. SPARSE balances existing biased reference
databases by grouping reference genomes into similarity-based hierar-
chical clusters, implemented as an efficient incremental data structure.
SPARSE assigns reads to these clusters using a probabilistic model,
which specifically penalizes non-specific mappings of reads from unknown
sources and hence reduces false-positive assignments. Our evaluation
on simulated datasets from two recent evaluation studies demonstrated
the improved precision of SPARSE in comparison to other methods for
species-level classification. In a third simulation, our method success-
fully differentiated multiple co-existing Escherichia coli strains from the
same sample. In real archaeological datasets, SPARSE identified ancient
pathogens with ≤0.02% abundance, consistent with published findings
that required additional sequencing data. In these datasets, other meth-
ods either missed targeted pathogens or reported non-existent ones.

SPARSE and all evaluation scripts are available at https://github.
com/zheminzhou/SPARSE.

1 Introduction

Shotgun metagenomics generates DNA sequences directly from environmental
samples, revealing unculturable organisms in the community as well as those that
can be isolated. The resulting data represents a pool of all species within a sam-
ple, thus raising the problem of identifying individual microbial species and their
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relative abundance within these samples. Methods for such taxonomic assign-
ment are either based on de novo assembly of the metagenomic reads, or take
advantage of comparisons to existing reference genomes. Here we concentrate
on the latter strategy, which relies on the diversity of genomes in ever-growing
reference databases. This strategy has been instrumental in identifying many
causative agents of ancient pandemics in reads obtained from archaeological
samples by detecting genetic signatures of modern human pathogens [26].

Published methods for taxonomic assignment can be divided into two cat-
egories. Taxonomic profilers maintain a small set of curated genomic markers,
which can be universal (e. g. used in MIDAS [16]) or clade-specific (e. g. used
in MetaPhlan2 [24]). Metagenomic reads that align onto these genomic markers
are used to extrapolate the taxonomic composition of the whole sample. These
tools are usually computationally efficient with good precision. However, they
also tend to show reduced resolution for species-level assignment [23], especially
when a species has a low abundance in the sample and, hence, may have few
reads mapping to a restricted set of markers.

Alternatively, taxonomic binners compare metagenomic reads against refer-
ence genomes to achieve read-level taxonomic classification. The comparisons
can be kmer-based (e. g. Kraken [25] and One Codex [15]) or alignment-based
(MEGAN [6], MALT [5] and Sigma [1]). Binning methods based on kmers are
usually fast, whilst alignment-based methods have greater sensitivity to distin-
guish the best match across similar database sequences. Benefiting from much
larger databases in comparison to genomic markers used by profiling meth-
ods, binning methods usually detect more microbial species at very low abun-
dance. However, they also tend to accumulate inaccurate assignments (false pos-
itives) [23] due to the incompleteness of the databases, resulting in reads from
unrepresented taxa being erroneously attributed to multiple relatives.

While microbial species of low abundance are hard to identify by marker-
based taxonomic profilers, the estimations of taxonomic binners can be hard to
interpret due to their low precision. This problem especially limits their appli-
cation to the in silico screening of microbial content in sequenced archaeological
materials [8]. Given that the ancient DNA fragments are expected to exist in low
proportions in these samples, methods need to identify weak endogenous signa-
tures hidden within a complex background that is governed by modern (envi-
ronmental) contamination. Furthermore, reads from archaeological samples are
fragmented and have many nucleotide mis-incorporations due to postmortem
DNA damage.

We identify two challenges that limit the performance of species-level assign-
ments. First and foremost, the reference database used for all taxonomic binnings
are not comprehensive. The vast majority of microbial genetic diversity reflect
uncultured organisms, which have only rarely been sequenced and analyzed.
Even for the bacteria that have genomic sequences, their data are biased towards
pathogens over environmental species. This leads to the next challenge where,
due to the lack of proper references, reads from unknown sources can acciden-
tally map onto distantly related references, mainly in two scenarios: (1) Foreign
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reads originating from a mobile element can non-specifically map to an identical
or similar mobile element in a known reference. (2) Reads originated from Ultra-
Conserved Elements (UCEs), which preserve their nucleotide sequences between
species, can also non-specifically map to the same UCE in an existing genome.

Addressing both of these challenges, we designed SPARSE (Strain Prediction
and Analysis using Representative SEquences). In SPARSE, we index all
genomes in large reference databases such as RefSeq into hierarchical clus-
ters based on different sequence identity thresholds. A representative database
that chooses one sequence for each cluster is then compiled to facilitate a
fast but sensitive analysis of metagenomic samples with modest computational
resources. Details are given in Sect. 2. Further, SPARSE implements a proba-
bilistic model for sampling reads from a metagenomic sample, which extends the
model described in Sigma [1] by weighting each read with its probability to stem
from a genome not included in the reference database, hence considered as an
unknown source. Details are given in Sect. 3.

We evaluate SPARSE on three simulated datasets published previously [14,
21,23]. Comparing SPARSE to several other taxonomic binning software in these
simulations shows its improved precision and sensitivity for assignments on the
species-level or even strain-level. We further evaluate SPARSE on three ancient
metagenomic datasets, demonstrating the application of SPARSE for ancient
pathogen screening. For all three datasets, SPARSE is able to correctly iden-
tify small amounts of ancient pathogens in the metagenomic samples that have
subsequently been confirmed by additional sequencing in the respective studies.

2 Database Indexing

2.1 Background

Average Nucleotide Identity. To catalog strain-level genomic variations within
an evolutionary context, we need to reconcile all the references in a database into
comprehensive classifications. Since its first publication, the average nucleotide
identity (ANI) in the conserved regions of genomes has been widely used for such
a purpose [10]. In particular, 95–96% ANI roughly corresponds to a 70% DNA-
DNA hybridization value, which has been used for ∼50 years as the definition
for prokaryotic species.

Marakeby et al. [13] proposed a hierarchical clustering of individual genomes
based on multiple levels of ANIs. Extending from the 95% ANI species cut-off,
it allows the classification of further taxonomic levels from superkingdoms to
clones. Applying such a clustering to large databases of reference genomes allows
to identify clusters of overrepresented species and hence to reduce redundancy
but not diversity in the database, depending the ANI levels chosen. However,
the standard ANI computation adopts BLASTn [2] to align conserved regions
between genomes, which is intractable to catalog large databases of reference
genomes. We therefore rely on an approximation of the ANI by MASH [18] to
speed-up comparisons.
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ANI Approximation. MASH uses the MinHash dimensionality-reduction tech-
nique to reduce large genomes into compressed sketches. A sketch is based on
a hash function applied to a kmer representation of a genome, and compres-
sion is achieved by only including the s smallest hash values of all kmers in the
genome in the sketch. Comparing the sketches of two genomes, MASH defines a
distance measure under a simple Poisson process of random site mutation that
approximates ANI values as shown in [18].

Parameter Estimation. Ondov et al. [18] already used MASH to group all
genomes in RefSeq into ANI 95% clusters. We adopted slightly different param-
eters and extended it to an incremental, hierarchical clustering system. The
accuracy of the MASH distance approximation is determined by both the kmer
length k and the sketch size s. Increasing k can reduce the random collisions in
the comparison but also increase the uncertainty of the approximation. We can
determine k according to equation (2) in [18]:

k = �log|Σ|(n(1 − q)/q)�,

where Σ is the set of all four possible nucleotides {A,C,G, T}, n is the total
number of nucleotides and q is the allowed probability of a random kmer to be
found in a dataset. Given n = 1 terabase-pairs (Tbp; current size of RefSeq)
and q = 0.05, which allows a 5% chance for a random k-mer to be present in a
1 Tbp database, we obtain a desired kmer size k = 23. Increasing the sketch size
s will improve the accuracy of the approximation, but will also increase the run
time linearly. We chose s = 4000 such that for 99.9% of comparisons that have
a MASH distance of 0.05, the actual ANI values fall between 94.5–95.5%.

2.2 SPARSE Reference Database

We combine the hierarchical clustering of several ANI levels with the MASH
distance computation to generate a representation of the current RefSeq [17]
database. The construction of the SPARSE reference database is parallelized
and incremental, thus the database can be easily updated with new genomes
without a complete reconstruction.

Hierarchical Clustering. In order to cluster genomes in different levels, we defined
8 different ANI levels L = [0.9, 0.95, 0.98, 0.99, 0.995, 0.998, 0.999, 0.9995] as pro-
posed in [13], in which the genetic distances of two sequential levels differ by ∼2
fold. The first four ANI levels differentiate strains of different species, or major
populations within a species. The latter four levels give fine-grained resolutions
for intra-species genetic diversities, which can be used to construct clade-specific
databases for specific bacteria. In Sect. 4, we show that the first four clustering
levels are sufficient for taxonomic binning down to the strain level.

The SPARSE database D(S,L,K) is extended incrementally as shown in
Algorithm 1, with S listing the sketches of all genomes already in the database
and K being a hash containing the cluster assignments at each level l ∈ L for
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each key s ∈ S. A new genome is integrated by finding another genome in the
database with the lowest distance using MASH, and clustering it with its nearest
neighbour sn depending on the ANI.

Algorithm 1. Incremental SPARSE database clustering
Input: SPARSE database D(S,L,K), list of new genomes G
Output: Extended SPARSE database D′(S,L,K)
1: for each genome g ∈ G do
2: sg = MashSketch(g)
3: sn = argmins∈SMashDistance(sg, s)
4: for 0 ≤ i ≤ |L| − 1] do
5: if L[i] ≤ 1 − MashDistance(sg, sn) then
6: Push K[sn][i] to K[sg]
7: else
8: Push |S| to K[sg]
9: Push sg to S

In the SPARSE implementation, we parallelized the database construction
by inserting batches of genomes at once and parallelizing sketch and distance
computation, thereby scaling to the complexity of the problem. After being
added to the database, the cluster assignment for a genome is fixed and never
redefined. Therefore, the insertion order of genomes can influence the database
structure. Here we utilize prior knowledge from the community, so the SPARSE
database is initialized first with all gold standard complete genomes in RefSeq,
followed by representative and curated genomes.

Representative Database. To avoid mapping metagenomic reads to redundant
genomes within the database, we construct a subset of genome representatives
for read assignment, similar to [9]. The representative database consists of the
first genome from each cluster defined by ANI 99%. This representative database
is sufficient for routine taxonomic profiling and pathogen identification. A repre-
sentative database with lower ANI values (i.e., 98% or 95%) does not recover the
genetic diversities of many bacterial species and thus reduces the performance
of the read-sampling model (described below). On the other hand, adding more
genomes that represent finer ANI levels increases the size of the database and
introduces an over-representation of references to certain pathogens. Representa-
tive databases based off these thresholds have been provided for users performing
bespoke analysis of a specific species.

The representative database is then indexed using bowtie2-build [11] with
standard parameters. SPARSE indexes 20, 850 bacterial representative genomes
in ∼4 h using 20 computer processes. Representative databases of other ANI
levels or clade-specific databases can also be built by altering the parameters.
Furthermore, traditional read mapping tools such as bowtie2 [11] show reduced
sensitivity for divergent reads. This is not a problem for many bacterial species,
especially bacterial pathogens, because these organisms have been selectively
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sequenced. However, fewer reference genomes are available for environmental
bacteria and eukarya. In order to map reads from such sources to their distantly
related references, SPARSE also provides an option to use MALT [5], which is
slower than bowtie2 and needs extensive computing memory, but can efficiently
align reads onto references with <90% similarity.

3 Metagenomic Read Sampling

Given read mappings to the representative databases as input, we adapt a proba-
bilistic model reconstructing the process of sampling reads from a metagenomic
sample to assign reads onto reference genomes. We extend the model imple-
mented in Sigma [1] by also considering that reads aligned to a genome in the
reference database could still be originating from an unknown source, thus avoid-
ing to overestimate the number of genomes present in the sample. We introduce a
weighting for each read reflecting the probability to be sampled from an unknown
genome, and show in Sect. 4 how this improves the precision of taxonomic assign-
ments.

Let E denote the set of both known and potentially unknown genomes in a
metagenomic sample, and the set of reference genomes included in the SPARSE
database is a subset G ∈ E. Let Pr(ri|E) be the probability of sampling a
random read ri from any possible source, we have

Pr(ri | E) = Pr(ri, G | E)Pr(ri | G).

We denote wi = Pr(ri, G|E) as the sampling probability, indicating the proba-
bility that ri is sampled from any known reference genome in G. On the other
hand, Pr(ri | G) is the probability of generating ri given G and can be further
separated as

Pr(ri | G) =
∑

gj∈G

Pr(ri | gj)Pr(gj | G),

where Pr(gj |G) is the probability that a genome gj ∈ G was chosen to generate
the read, and Pr(ri|gj) is the probability of obtaining read ri from gj . As in
Sigma, given a uniform mismatch probability σ = 0.05, Pr(ri|gj) can be directly
calculated from the alignment of ri to genome gi with x mismatches, and can
be stored in a matrix Q, such that

Qi,j = Pr(ri | gj) = σx(1 − σ)l−x,

where l is the length of read ri. We next describe how the sampling probability
wi is inferred, by giving a weight to each read that indicates the probability
of being sampled from a known reference genome. Reads with a low weight do
not influence the optimization process used to infer the optimal Pr(gj |G) for a
complete metagenomic read dataset.
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3.1 SPARSE Sampling Probability

We model two scenarios that can lead to non-specific mappings of foreign reads.

(1) Since there is no systematic way of masking all mobile elements in a refer-
ence sequence, we evaluate the probability of a read being drawn from the
core genome. We assume that highly conserved regions are part of the core
genome, which has been vertically inherited, whereas variable regions likely
represent horizontal gene transfers (HGTs). We denote this HGT probability
as mi.

(2) We evaluate the probability of a read originating from an Ultra-Conserved
Element (UCE), by comparing the read depths of the aligned genome frag-
ments with other regions in the genome. UCEs are so highly conserved that
additional reads from divergent genomes are likely to map on to them, which
results in a higher read depth than other regions. We denote this UCE prob-
ability as ni. Combining both cases as a joint probability, we infer a weight
wi for each read as

wi = mini.

HGT Probability. Given any cluster t in ANI level k that consists of u references,
a read ri can be assigned to either the core genome gc or accessory genome ga

of this cluster. Given the number of references v ⊆ u the read aligns to, we can
formulate the probability of the read originating from the core genome as

Prt(gc|ri) =
Prt(ri|gc)Pr(gc)

Pr(ri)
=

Prt(ri|gc)Pr(gc)
Prt(ri|gc)Pr(gc) + Prt(ri|ga)(1 − Pr(gc))

,

P rt(ri|gc) = pv
c (1−pc)u−v, P rt(ri|ga) = pv

a(1 − pa)u−v

(1)

where Pr(gc) is the prior probability of any read originating from a core genomic
region, and pc and pa are the respective probabilities for core genomic fragments
or accessory genomic fragments. Default prior probabilities in SPARSE are given
in Table 1. Furthermore, a read can align to multiple clusters in the same ANI
level k, so we average the probabilities of all such clusters for each read weighted
by Q inferred from the read alignment:

Prk(gc|ri) =
∑

t maxgj∈t Qi,jPrt(gc|ri)∑
t maxgj∈t Qi,j

.

Finally, we consider three different ANI levels for the core genome analysis (by
default 90%, 95% and 98%), assigning a lower value for mi if the read does not
map to the core genome at any of these ANI levels:

mi = 1 −
∏

k

(
1 − Prk(gc|ri)

)
. (2)
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Default values for the prior probabilities were inferred from a published study
of core genes across multiple bacterial species [3]. We account for 1% of random
deletions of core genes, which gives pc = 0.99. We also observed that <10%
of all genes are core genes in bacterial species represented by many genomes.
This results in

∑
Pr(gc) < 0.1 over all three ANI levels. We arbitrarily assigned

a higher Pr(gc) for levels with lower ANI, because a sequence fragment is less
likely to be part of a mobile element if it is coincidently present in more divergent
genomes. Finally, ∼40% of the genes in a random genome are core genes. This
gives mi ≈ 0.6 when v = 1 and u = 1, which can be used to find empirical values
of pa via Eqs. 1 and 2.

Table 1. Default prior probabilities for three ANI levels, values inferred from [3].

ANI Pr(gc) pc pa

90% 0.05 0.99 0.1

95% 0.02 0.99 0.2

98% 0.01 0.99 0.5

UCE Probability. In order to compare the read coverage of each fragment in
a reference genome gj with other fragments of the same genome, we split its
sequence into k consecutive fragments fj,k using two uniform arbitrary lengths,
487 bps and 2000 bps. Here 487 is used because it is a prime, such that the
ends of two fragments overlap only once per Mbp. Then the read depth in each
fragment, dk, follows a Poisson distribution with parameter λ as the average
number of reads per region and probability mass function f(k, λ). Because of
the complexity of the read alignments, we relax the probability of read depth in
each fragment such that a wide range of read depths retain high probabilities:

Pr(ri|fj,k) =

⎧
⎪⎪⎨

⎪⎪⎩

f(dk,λ/
√

2)

f(λ/
√

2,λ/
√

2)
for dk < λ/

√
2,

1 for λ/
√

2 ≤ dk ≤ √
2λ,

f(dk,
√

2λ)

f(
√

2λ,
√

2λ)
for

√
2λ < dk,

Since a read can again align to multiple genomes gj , we compute the UCE
probability of a read as a weighted average of all its alignments. If a read aligns
multiple times to the same genome gj with equal alignment score, we choose one
fragment randomly. The UCE probability is then defined as

ni =

∑
j(Qi,jPr(ri|fj,k))

∑
j Qi,j

.

Thus a lower value of ni is the result from a deviation of the general coverage at
the read position in comparison to the average coverage in the genome, indicating
that the read is likely mapping to an ultra-conserved region in the genome.
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3.2 Optimization Problem

Knowing the weight wi for all reads ri in a whole metagenomic read set R, the
task is then simplified to finding optimal Pr(gj |G) values that maximize the
probability of the whole read set:

max Pr(R|E) = max
∏

ri∈R

Pr(ri | E) = max
∏

ri∈R

(
wi

∑

gj∈G

Qi,jPr(gj |G)
)
.

The optimization problem can be solved by a non-linear programing (NLP)
method. In SPARSE, we rely on a modified version of the function provided in
Sigma [1].

After optimizing Pr(gj |G), we finally assign a read to a potential reference
by checking the following ratio of the computed probabilities:

P (ri, gj) =
Pr(ri, gj |G)
Pr(ri, G)

=
Qi,j ∗ Pr(gj |G)∑

gj∈G Qi,j ∗ Pr(gj |G)
. (3)

We may assign a read to multiple references, as long as P (ri,gj)
maxg P (ri,g) ≥ 0.1. This

allows a better abundance estimation for multiple strains from the same species,
in which case a read cannot be assigned unambiguously to a single reference.

Further, let ri ∈ B ⊂ R be all reads assigned to gj . For a read ri of
length l with x mismatches in the alignment to its assigned reference, we have a
nucleotide similarity of si,j = l−x

l . The weighted average similarity s̄B,j can be
calculated as

s̄B,j =

∑
ri∈B

si,j wi P (ri, gj)
∑

ri∈B

wi P (ri, gj)
.

Potentially, reads assigned to a single reference could still originate from sev-
eral co-existing genomes, with varying degrees of diversity, in the metagenome.
We can identify reads from more divergent sources by comparing si,j to their
average similarity. If all reads assigned to a single reference originate from the
same genome in the metagenome, we assume that the similarity of most reads
complies with the average similarity over all reads. However, reads originating
from very conserved regions show higher similarity than the average and pro-
vide a sampling bias. On the other hand, reads originating from different more
divergent genomes, will show lower similarity which can be used to avoid over-
estimating the abundance of each cluster. Therefore we compute the expected
average nucleotide identity s′ for ri as

s′
i,j = min (si,j , sB,j).

This similarity reflects the ANI between each read and the assigned reference
and, as described in the next section, can be used to compute the abundance of
each cluster in the metagenomic sample.
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3.3 ANI Cluster Abundances

The equation miniP (ri, gj) describes the probability, for each read ri ∈ R, to be
drawn from a region in reference gj that is part of the core genome (mi) and has
even read depth in comparison to the whole chromosome (ni). In summary for all
reads assigned to gj ,

∑
i mini ∗ P (ri, gj) gives the frequency of reads originating

from the core genome of gj . However, the desired read abundance for a reference
gj needs to also include reads from the accessory genome. Such reads have been
previously suppressed when computing mi. If we assume that all species have the
same proportion of core genome, the relative abundances of their core genomes
will be equal to the relative abundance of their whole genomes. However, since
this is not the case [3], we need to normalize each mi computed previously. Given
P (ri, gj) from Eq. 3, for any ANI 90% cluster t, we normalize mi for a read ri as

m′
i =

∑
gj∈t

∑
rk∈R,

s′
k,j≥0.9

P (rk, gj)

∑
gj∈t

∑
rk∈R,

s′
k,j≥0.9

mk P (rk, gj)
∗ mi.

Finally, we assign reads into clusters of all ANI levels according to the references
contained in the cluster. For each cluster, we only assign reads if its similarity
complies with the ANI level l of the cluster, i. e. s′

i, j ≥ l.
Thus the abundance of a cluster tl is computed as the sum of all read abun-

dances assigned to all genomes in the cluster weighted by their probability to
originate from an unknown genome. Therefore clusters containing only reads
with small ni and mi probabilities will receive a low abundance value even if
many reads are assigned to it.

atl =
∑

gj∈tl

∑

ri∈R
s′
i,j≥l

m′
i ni P (ri, gj).

3.4 Taxonomic Labels for ANI Clusters

We finally assign standard taxonomic designations to all clusters at all ANI
levels, in order to interpret their biological meaning. Here we rely on a majority
vote of all genomes in a cluster. However, the taxonomic levels are restricted to
certain ANI levels. For example, species are distinguished at the ANI 95% level,
and a species designation is therefore inappropriate for an ANI 90% cluster.
Similarly, the taxonomic label for an ANI 95% cluster should not include any
subspecies designations.

4 Evaluation

4.1 Representative Database

We ran SPARSE to index the RefSeq database that consists of 101, 680 complete
or draft genomes into 28, 732 clusters at ANI 99% level, which were further
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grouped into 18, 205 clusters at 95% ANI level, as shown in Fig. 1. Grouping
all the genomes according to their species, the resulting representative database
is much more evenly distributed, with a Pielou’s evenness [19] of J ′ = 0.9,
comparing to J ′ = 0.51 for the whole RefSeq database. Over-representation
of pathogenic organisms in the RefSeq database are largely due to repeated
sequencing of nearly identical genomes rather than sequencing of intra-species
genetic diversities. In particular, nearly half of the genomes in RefSeq are from
the top 10 most sequenced bacterial species, which are all human pathogens.
All these genomes were grouped into 615 clusters at ANI 99% level, which gives
a 65-fold reduction of the data indexed for these species. With this strategy,
the whole RefSeq database was downloaded and assigned into ANI levels in
∼23 h, using 20 processes on a standalone server. Further insertion of 1, 000 new
genomes (∼5 MB) into an already established database takes ∼15mins.

Bacteria Virus Archaea Eukaryota

H. pylori
V. parahaemolyticus

NCBI RefSeq
(101,680)

ANI99 clusters
(28,732)

ANI95 clusters
(18,205)

S. pneumoniae

S. aureus

S. enterica

E. coli

M. 
tuberculosis

Fig. 1. Hierarchical clustering of 101, 680 genomes in NCBI RefSeq database (Aug.
2017) into 18, 205 ANI 95% clusters using SPARSE. Each rectangle represents such a
cluster at ANI 95% level, with its area relative to the total number of genomes (top)
or clusters at ANI 99% (bottom).

4.2 Simulated Data

We ran SPARSE on three recent simulated datasets (Sczyrba et al. [23], McIn-
tyre et al. [14] and Quince et al. [21]). For a fair comparison, the analyses for
all datasets were based on a database built from NCBI RefSeq and taxonomy
databases dated 22th June, 2015, which is the deadline for the comparison in [23]
and also pre-dates the other two comparisons. We evaluated the performance of
SPARSE as described in the respective papers for the read-level taxonomic bin-
ners, adopting the results for the other compared methods directly from the
studies. We additionally included Sigma using the same database as SPARSE
in the comparison. We calculated sensitivity and precision based on the number
of true-positives (TP; correctly assigned reads), false-positives (FP; incorrectly
assigned reads), and false-negatives (FN; unassigned reads).
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Fig. 2. Performances of SPARSE in simulated published datasets. The performance
of all the tools in A and B, except for SPARSE and Sigma, are obtained from
the respective publications [14,23]. SPARSE was run in parallel using two different
databases. [2015] uses database built from RefSeq at 2015, whereas [2017] uses up-
to-date database. (A) All the simulated reads in McIntyre et al. [14] were derived
from published genomes. (B) The Sczyrba et al. [23] used unpublished genomes for
read simulations. C+D) Strain-level identification using the mocked E. coli datasets as
published in [21]. (C) Left: The distance-based species tree forE. coli for 45 ANI 99%
representative genomes plus the five genomes used in [21] for mocked reads. The four
largest ANI 98% clusters in E. coli are highlighted with colors. Right: Each column
shows one of the 16 mocked samples. The true relative abundances of E. coli strains
in samples (blue) and the relative abundances of predicted strains (red) in samples are
shown as colored squares. (D) Comparison of true E. coli strain abundances versus
SPARSE predictions. The dashed line indicates the linear regression of the two values,
with R2 = 0.9948 and p < 2.2e−16. (Color figure online)

All simulated reads in the McIntyre et al. [14] study were generated from pub-
lished complete genomes. This dataset is suitable for comparing the completeness
of the databases, as well as the sensitivity of the read mapping approaches in
different tools. Both SPARSE and Sigma were run on 18 samples that have read-
level taxonomic labels. SPARSE binned all the samples in ∼10 hours with 20
processes. The precision and sensitivity of both tools in addition to six binning
tools from [14] are summarized in Fig. 2A. As expected, all tools reached a high
precision of >97%, but differed in their sensitivity. Benefiting from the represen-
tative database, SPARSE and Sigma assigned the highest numbers of reads into
correct species. The difference between the two methods is due to their differ-
ent strategies in the modeling, where Sigma assigned all reads to their possible
references, whereas SPARSE filtered out unreliable mappings. An independent
run of SPARSE using the latest RefSeq database (Aug. 2017) assigned slightly
more reads into species, but does not improve precision. This database consists
of 20,850 representative genomes, which is ∼2 fold the number of representatives
(9,707) in RefSeq 2015. The run time of SPARSE increases with this database to
∼24 h, which is also ∼2 times slower as running SPARSE against RefSeq 2015.

The datasets in Sczyrba et al. [23] are much more challenging, because all the
reads were generated from sequencing of environmental isolates, many of which
do not have closely related references in the 2015 database. Furthermore, many
reads do not have a known microbial species label, because they are not similar
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to any species in SILVA [20], which was used as the gold standard in this study.
We ran both Sigma and SPARSE on the medium complexity datasets, and com-
pared the results with the other methods (see Fig. 2f in [23]) for the recovery
of microbial species (Fig. 2B). Using 80 processes, SPARSE ran through all four
datasets in ∼40 h. All the taxonomic binners published in [23] obtained an aver-
age precision of <30% at species level, except for taxator-tk [4] with a precision
of 70% along with the lowest sensitivity (∼1.25%). The performance of Sigma is
comparable to other binning tools, whereas SPARSE obtained an exceptionally
high precision of ∼85% while still maintaining a sensitivity of ∼23%. Many incor-
rect taxonomic bins predicted in Sigma were suppressed in SPARSE, because
they have low sampling probability wi to any of the existing references. Again,
SPARSE was also run independently against the database built Aug. 2017. The
runs completed in 4 days and recovered 63% of the species in the CAMI median
datasets, with an average precision of 97%.

Both benchmarks evaluate the performances of taxonomic binnings on or
above species level, but give no resolution in intra-species diversity. DES-
MAN [21] allows reference-free recovery of strain-level variations based on uneven
read depths of different strains across multiple samples. It has been compared
with two other strain-level binning methods using mock E. coli samples [21].
Applying SPARSE to the same 20 genome mocks, we recovered 50/51 E. coli
strains in all 16 samples without any additional strains (false positives), as shown
in Fig. 2C. The only strain that was not recovered by SPARSE is 2011C-3493
in the 12th sample (Sample733 in [21]), which accounts for only ∼0.03% of all
E. coli reads in the sample. We also obtained an almost exact correspondence
between the relative abundances of the strains and the predictions (Fig. 2D). A
linear regression of real abundances and the predictions gives an R2 = 0.9948
and p < 2.2e−16.

4.3 Ancient Metagenomes

We further evaluated SPARSE and five additional metagenomic tools on three
real sets of ancient DNA reads (Mycobacterium tuberculosis from [7], Yersinia
pestis from [22] and Helicobacter pylori from [12]) and summarised their results
in Table 2. For all samples, the presence of the targeted pathogen, although
in very low frequencies (≤0.02%), has been confirmed by additional sequenc-
ing in the respective publications. MIDAS [16] failed in all three samples and
MetaPhlan2 [24] managed to identify H. pylori but failed in the other two sam-
ples. The results for these two marker-based approaches are consistent with the
simulations discussed earlier. Kraken [25] and One Codex [15] are both based
on kmer-based taxonomic assignment, but yielded different results. Kraken only
identified H. pylori, whereas One Codex got positive results in all three samples.
However both methods incurred a high number of false positives. For exam-
ple, Kraken reported Salmonella enterica and Vibrio cholerae in the Iceman
sample, whereas One Codex predicted two Yersiniae. All these predictions are
inconsistent with results from other tools and analyses presented in the pub-
lications. Sigma identified two of three pathogens but inaccurately predicted



238 Z. Zhou et al.

V. parahaemolyticus, which is normally associated with seafood, for the human
remains from the Bronze Age. SPARSE successfully identified all three targeted
species without any additional suspicious pathogen, which highlights its appli-
cation to archaeological samples.

It took SPARSE ∼1 and ∼2.5 h to profile the M. tuberculosis and Y. pestis
datasets respectively, and over 16 h for the H. pylori dataset, using 20 processes
in a standalone server. The run-time for Sigma are approximately 5-fold higher
than SPARSE in all the datasets. For both tools, the read alignment is the main
limiting factor and accounted for over ∼95% of their run-time. In contract, the
other binning tools listed in the table finished within 10 min on all the datasets,
due to their different ways of handling reads.

Table 2. Summary of results for different metagenomic binning tools on real archaeo-
logical datasets identifying ancient pathogens.

ERR650978 [7]
1794AD Hungarian
1.7M reads
MT 0.02%

ERR1094783 [12]
5300-yr-old Iceman
15M reads
H. pylori 0.01%

ERR1018927 [22]
Bronze Age human
1.6M reads
Y. pestis 0.01%

SPARSE + + +

Sigma + − +
(VP)

Kraken −
(CD,ML)

+
(SE,VC)

−

One Codex +
(MA,SA)

+
(YE,YP)

+

MetaPhlan − + −
MIDAS − − −

a +/− for the identification of the pathogen. Abbreviations for suspicious pre-
dictions in bracket (CD: Corynebacterium diphtheriae; MA: M. avium; ML: M.
leprae; MT: M. tuberculosis; SA: Staphylococcus aureus; SE: S. enterica; VC: V.
cholerae; VP: V. parahaemolyticus; YE: Y. enterocolitica; YP: Y. pseudotubercu-
losis).

5 Conclusion

The genetic signatures of specific microbes in metagenomic data, such as human
pathogens, are often buried behind the majority of reads from genetically diverse
environmental organisms. This is exemplified in the metagenomic sequencing of
archaeological samples. Current taxonomic assignment methods compare the
metagenomic data with databases that do not fully capture the diversity of
microbial genomes. Among these tools, the marker-based taxonomic profilers fail
to identify species at low abundances whereas whole genome based taxonomic
binners give inaccurate predictions due to non-specific read mappings on ultra-
conserved or horizontally transferred elements.
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SPARSE indexes existing reference genomes into a comprehensive database
with automatic hierarchical clusterings of related organisms. This database is
used as a reference for mapping of metagenomic reads. SPARSE penalizes unre-
liable mappings of reads from unknown sources, and integrates all remaining
into a probabilistic model, in which reads are assigned to either an existing ref-
erence or unknown sources. In both simulations and real archaeological data,
SPARSE outperforms all existing methods, especially in the precision of species-
level assignment. Furthermore, SPARSE manages to identify multiple strains of
the same species even when they co-exist in the same sample. In contrast to
many existing tools, SPARSE aligns metagenomic reads onto a huge representa-
tive database. This database, albeit being a compression of the even larger Ref-
Seq database, is still much larger than many existing databases. As a result, the
run-time of SPARSE is limited by the performance of its adopted read aligner,
which could be improved in the future development.
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